33834 Results for: "4-Methoxybenzyl+isothiocyanate&"
Anti-ADGRG7 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 128 (GPR128), a member of the secretin family of GCPRs with a GPS domain in its N-terminal domain, may mediate signaling processes to the interior of the cell via activation of G proteins. GPR128 represents an allopeptide which may be involved in T cell mediated transplant rejection as it is able to stimulate 2.102 T cells.
Expand 1 Items
Anti-PRKAB1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).
Expand 1 Items
Anti-UBE2J2 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Ubiquitination is an important molecular mechanism by which abnormal or short-lived proteins are targeted for degradation by the concerted efforts of at least three classes of enzymes: ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s). UBE2J2 (Ubiquitin-conjugating enzyme E2 J2), also known as NCUBE2 (Non-canonical ubiquitin-conjugating enzyme 2), is a 259 amino acid single pass type IV membrane protein that that belongs to the E2 ubiquitin-conjugating enzyme family and is involved in protein degradation. Localized to the membrane of the endoplasmic reticulum (ER), UBE2J2 catalyzes the attachment of ubiquitin to misfolded membrane proteins, thereby targeting them for proteasomal destruction. This ATP-dependent reaction yields AMP, a diphosphate and a ubiquitin-tagged protein and may be a method of quality control within the ER. Two isoforms of UBE2J2 exist due to alternative splicing events.
Expand 1 Items
Anti-FHIT Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Cleaves P(1)-P(3)-bis(5'-adenosyl) triphosphate (Ap3A) to yield AMP and ADP. Can also hydrolyze P(1)-P(4)-bis(5'-adenosyl) tetraphosphate (Ap4A), but has extremely low activity with ATP. Modulates transcriptional activation by CTNNB1 and thereby contributes to regulate the expression of genes essential for cell proliferation and survival, such as CCND1 and BIRC5. Plays a role in the induction of apoptosis via SRC and AKT1 signaling pathways. Inhibits MDM2-mediated proteasomal degradation of p53/TP53 and thereby plays a role in p53/TP53-mediated apoptosis. Induction of apoptosis depends on the ability of FHIT to bind P(1)-P(3)-bis(5'-adenosyl) triphosphate or related compounds, but does not require its catalytic activity, it may in part come from the mitochondrial form, which sensitizes the low-affinity Ca(2+) transporters, enhancing mitochondrial calcium uptake. Functions as tumor suppressor.
Expand 1 Items
Anti-FHIT Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Cleaves P(1)-P(3)-bis(5'-adenosyl) triphosphate (Ap3A) to yield AMP and ADP. Can also hydrolyze P(1)-P(4)-bis(5'-adenosyl) tetraphosphate (Ap4A), but has extremely low activity with ATP. Modulates transcriptional activation by CTNNB1 and thereby contributes to regulate the expression of genes essential for cell proliferation and survival, such as CCND1 and BIRC5. Plays a role in the induction of apoptosis via SRC and AKT1 signaling pathways. Inhibits MDM2-mediated proteasomal degradation of p53/TP53 and thereby plays a role in p53/TP53-mediated apoptosis. Induction of apoptosis depends on the ability of FHIT to bind P(1)-P(3)-bis(5'-adenosyl) triphosphate or related compounds, but does not require its catalytic activity, it may in part come from the mitochondrial form, which sensitizes the low-affinity Ca(2+) transporters, enhancing mitochondrial calcium uptake. Functions as tumor suppressor.
Expand 1 Items
Anti-PRKAB1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit may be a positive regulator of AMPK activity. The myristoylation and phosphorylation of this subunit have been shown to affect the enzyme activity and cellular localization of AMPK. This subunit may also serve as an adaptor molecule mediating the association of the AMPK complex. [provided by RefSeq, Jul 2008].
Expand 1 Items
Anti-GPRIN3 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
May be involved in neurite outgrowth.G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/action, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling, and are involved in many pathological conditions. GRIN3 (G protein-regulated inducer of neurite outgrowth 3), also known as GPRIN3, is a 776 amino acid protein that contains a C-terminal region which shares a high homology with GRIN2 and GRIN1, and may function in neurite outgrowth.
Expand 1 Items
Anti-GPRIN2 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/actions, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. GRIN2 (G protein-regulated inducer of neurite outgrowth 2), also known as GPRIN2, is a 458 amino acid protein that is expressed in cerebellum and is thought to play a role in neurite outgrowth. GRIN2 interacts with activated G?oand G?, and is encoded by a gene that maps to human chromosome 10q11.22.
Expand 1 Items
Anti-PRKACG Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
PKA (or cAPK) is a cyclic AMP dependent protein kinase. When activated by the second messenger cAMP, PKA mediates diverse cellular mechanisms, including proliferation, ion transport, regulation of metabolism, plus gene transcription. PKA is comprised of two dimers of two subunits, R (regulatory) and C (catalytic). Two families of R subunit (RI and RII) and three C subunit isoforms (C alpha, C beta, and C gamma) have been identified each possessing distinct cAMP binding properties and resulting in different phosphorylation states. C subunit is activated through autophosphorylation and direct phosphorylation at Thr197 by PDK-1. Tissue specific expression of C gamma, indicates pressure on C gamma during evolution, acting to modulate it in a functionally specific way. Certain amino acid substitutions make C gamma a distinct member of the cAMP dependent subfamily of protein kinases, and suggest that C gamma may be distinct in its protein substrate specificity or its interaction with the different regulatory subunits.
Expand 1 Items
Anti-Group I mGLUR Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. The metabotropic glutamate receptors are a family of G protein-coupled receptors, that have been divided into 3 groups on the basis of sequence homology, putative signal transduction mechanisms, and pharmacologic properties. Group I includes GRM1 and GRM5 and these receptors have been shown to activate phospholipase C. Group II includes GRM2 and GRM3 while Group III includes GRM4, GRM6, GRM7 and GRM8. Group II and III receptors are linked to the inhibition of the cyclic AMP cascade but differ in their agonist selectivities. The canonical alpha isoform of the metabotropic glutamate receptor 1 gene is a disulfide-linked homodimer whose activity is mediated by a G-protein-coupled phosphatidylinositol-calcium second messenger system. Alternative splicing results in multiple transcript variants encoding distinct isoforms; some of which may have distinct functions. [provided by RefSeq].
Expand 1 Items
Anti-CAB39 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Mouse protein 25 alpha (MO25 alpha, CAB39) is a 40-kDa protein that, together with the STE20-related adaptor-alpha (STRAD alpha) pseudo kinase, forms a regulatory complex capable of stimulating the activity of the LKB1 tumor suppressor protein kinase. The latter is mutated in the inherited Peutz-Jeghers cancer syndrome (PJS). CAB39 binds directly to a conserved Trp-Glu-Phe sequence at the STRAD alpha C terminus, markedly enhancing binding of STRAD alpha to LKB1 and increasing LKB1 catalytic activity. Skeletal muscle contraction results in the phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an upstream kinase (AMPKK). The LKB1-STE-related adaptor (STRAD)-mouse protein 25 (MO25) complex is the major AMPKK in skeletal muscle; however, LKB1-STRAD-MO25 activity is not increased by muscle contraction. This relationship suggests that phosphorylation of AMPK by LKB1-STRAD-MO25 during skeletal muscle contraction may be regulated by allosteric mechanisms.
Expand 1 Items
Anti-AVPR1B Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).
Expand 1 Items
Anti-PDPK1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Serine/threonine kinase which acts as a master kinase, phosphorylating and activating a subgroup of the AGC family of protein kinases. Its targets include: protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), p70 ribosomal protein S6 kinase (RPS6KB1), p90 ribosomal protein S6 kinase (RPS6KA1, RPS6KA2 and RPS6KA3), cyclic AMP-dependent protein kinase (PRKACA), protein kinase C (PRKCD and PRKCZ), serum and glucocorticoid-inducible kinase (SGK1, SGK2 and SGK3), p21-activated kinase-1 (PAK1), protein kinase PKN (PKN1 and PKN2). Plays a central role in the transduction of signals from insulin by providing the activating phosphorylation to PKB/AKT1, thus propagating the signal to downstream targets controlling cell proliferation and survival, as well as glucose and amino acid uptake and storage. Negatively regulates the TGF-beta-induced signaling by: modulating the association of SMAD3 and SMAD7 with TGF-beta receptor, phosphorylating SMAD2, SMAD3, SMAD4 and SMAD7, preventing the nuclear translocation of SMAD3 and SMAD4 and the translocation of SMAD7 from the nucleus to the cytoplasm in response to TGF-beta. Activates PPARG transcriptional activity and promotes adipocyte differentiation. Activates the NF-kappa-B pathway via phosphorylation of IKKB. The tyrosine phosphorylated form is crucial for the regulation of focal adhesions by angiotensin II. Controls proliferation, survival, and growth of developing pancreatic cells. Participates in the regulation of Ca(2+) entry and Ca(2+)-activated K(+) channels of mast cells. Essential for the motility of vascular endothelial cells (ECs) and is involved in the regulation of their chemotaxis. Plays a critical role in cardiac homeostasis by serving as a dual effector for cell survival and beta-adrenergic response.
Expand 1 Items
Anti-PDPK1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Serine/threonine kinase which acts as a master kinase, phosphorylating and activating a subgroup of the AGC family of protein kinases. Its targets include: protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), p70 ribosomal protein S6 kinase (RPS6KB1), p90 ribosomal protein S6 kinase (RPS6KA1, RPS6KA2 and RPS6KA3), cyclic AMP-dependent protein kinase (PRKACA), protein kinase C (PRKCD and PRKCZ), serum and glucocorticoid-inducible kinase (SGK1, SGK2 and SGK3), p21-activated kinase-1 (PAK1), protein kinase PKN (PKN1 and PKN2). Plays a central role in the transduction of signals from insulin by providing the activating phosphorylation to PKB/AKT1, thus propagating the signal to downstream targets controlling cell proliferation and survival, as well as glucose and amino acid uptake and storage. Negatively regulates the TGF-beta-induced signaling by: modulating the association of SMAD3 and SMAD7 with TGF-beta receptor, phosphorylating SMAD2, SMAD3, SMAD4 and SMAD7, preventing the nuclear translocation of SMAD3 and SMAD4 and the translocation of SMAD7 from the nucleus to the cytoplasm in response to TGF-beta. Activates PPARG transcriptional activity and promotes adipocyte differentiation. Activates the NF-kappa-B pathway via phosphorylation of IKKB. The tyrosine phosphorylated form is crucial for the regulation of focal adhesions by angiotensin II. Controls proliferation, survival, and growth of developing pancreatic cells. Participates in the regulation of Ca(2+) entry and Ca(2+)-activated K(+) channels of mast cells. Essential for the motility of vascular endothelial cells (ECs) and is involved in the regulation of their chemotaxis. Plays a critical role in cardiac homeostasis by serving as a dual effector for cell survival and beta-adrenergic response. Plays an important role during thymocyte development by regulating the expression of key nutrient receptors on the surface of pre-T cells and mediating Notch-induced cell growth and proliferative responses.
Expand 1 Items
Anti-PRKAA2 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2.
Expand 1 Items
Anti-LKB1 Thr363 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP53. Acts as a key upstream regulator of AMPK by mediating phosphorylation and activation of AMPK catalytic subunits PRKAA1 and PRKAA2 and thereby regulates processes including: inhibition of signaling pathways that promote cell growth and proliferation when energy levels are low, glucose homeostasis in liver, activation of autophagy when cells undergo nutrient deprivation, and B-cell differentiation in the germinal center in response to DNA damage. Also acts as a regulator of cellular polarity by remodelling the actin cytoskeleton. Required for cortical neuron polarization by mediating phosphorylation and activation of BRSK1 and BRSK2, leading to axon initiation and specification. Involved in DNA damage response: interacts with p53/TP53 and recruited to the CDKN1A/WAF1 promoter to participate in transcription activation. Able to phosphorylate p53/TP53; the relevance of such result in vivo is however unclear and phosphorylation may be indirect and mediated by downstream STK11/LKB1 kinase NUAK1. Also acts as a mediator of p53/TP53-dependent apoptosis via interaction with p53/TP53: translocates to the mitochondrion during apoptosis and regulates p53/TP53-dependent apoptosis pathways. In vein endothelial cells, inhibits PI3K/Akt signaling activity and thus induces apoptosis in response to the oxidant peroxynitrite (in vitro). Isoform 2: Has a role in spermiogenesis.
Expand 1 Items
Anti-PRKAA1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2.
Expand 1 Items
Anti-STK11 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP53. Acts as a key upstream regulator of AMPK by mediating phosphorylation and activation of AMPK catalytic subunits PRKAA1 and PRKAA2 and thereby regulates processes including: inhibition of signaling pathways that promote cell growth and proliferation when energy levels are low, glucose homeostasis in liver, activation of autophagy when cells undergo nutrient deprivation, and B-cell differentiation in the germinal center in response to DNA damage. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton. Required for cortical neuron polarization by mediating phosphorylation and activation of BRSK1 and BRSK2, leading to axon initiation and specification. Involved in DNA damage response: interacts with p53/TP53 and recruited to the CDKN1A/WAF1 promoter to participate in transcription activation. Able to phosphorylate p53/TP53; the relevance of such result in vivo is however unclear and phosphorylation may be indirect and mediated by downstream STK11/LKB1 kinase NUAK1. Also acts as a mediator of p53/TP53-dependent apoptosis via interaction with p53/TP53: translocates to the mitochondrion during apoptosis and regulates p53/TP53-dependent apoptosis pathways. In vein endothelial cells, inhibits PI3K/Akt signaling activity and thus induces apoptosis in response to the oxidant peroxynitrite (in vitro). Regulates UV radiation-induced DNA damage response mediated by CDKN1A.
Expand 1 Items
N-(4-Methoxybenzyl)-N-methylbenzenesulphonamide
Supplier: Apollo Scientific
N-(4-Methoxybenzyl)-N-methylbenzenesulphonamide
Expand 2 Items
N-(4-Methoxybenzyl) 5-bromopicolinamide
Supplier: Apollo Scientific
N-(4-Methoxybenzyl) 5-bromopicolinamide
Expand 1 Items
(4-Methoxybenzyl)malononitrile 95%
Supplier: Apollo Scientific
(4-Methoxybenzyl)malononitrile 95%
Expand 2 Items
3-Methoxybenzyl bromide 98%
Supplier: Apollo Scientific
3-Methoxybenzyl bromide 98%
Expand 3 Items
N-(4-Methoxybenzyl)cyclopropanamine 97%
Supplier: Apollo Scientific
N-(4-Methoxybenzyl)cyclopropanamine 97%
Expand 1 Items
4-Methoxybenzyl chloride
Supplier: Apollo Scientific
4-Methoxybenzyl chloride
Expand 3 Items
4-Methoxybenzyl isocyanide 95%
Supplier: Apollo Scientific
4-Methoxybenzyl isocyanide 95%
Expand 2 Items
Diethyl 2-(4-Methoxybenzyl)malonate
Supplier: Apollo Scientific
Diethyl 2-(4-Methoxybenzyl)malonate
Expand 1 Items
4-Iodo-2-methoxybenzyl alcohol
Supplier: Apollo Scientific
4-Iodo-2-methoxybenzyl alcohol
Expand 2 Items
2-Bromo-3-methoxybenzyl alcohol
Supplier: Apollo Scientific
2-Bromo-3-methoxybenzyl alcohol
Expand 2 Items
2-(Allyloxy)-4-methoxybenzyl Bromide
Supplier: Apollo Scientific
2-(Allyloxy)-4-methoxybenzyl Bromide
Expand 1 Items
4-Methoxybenzyl isocyanate 99%
Supplier: Thermo Fisher Scientific
CAS No.: 56651-60-6