126130 Results for: "3-Bromopropionic acid&"
Anti-GNAS Rabbit Polyclonal Antibody (Alexa Fluor® 750)
Supplier: Bioss
GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.
Expand 1 Items
Anti-GNAT1 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.
Expand 1 Items
Anti-ADGRG7 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 128 (GPR128), a member of the secretin family of GCPRs with a GPS domain in its N-terminal domain, may mediate signaling processes to the interior of the cell via activation of G proteins. GPR128 represents an allopeptide which may be involved in T cell mediated transplant rejection as it is able to stimulate 2.102 T cells.
Expand 1 Items
Anti-PDE4D Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Cyclic AMP-dependent phosphodiesterase type D (PDE4D) family is comprise of 5 variants (PDE4D1, D2, D3, D4 and D5). One or more PDE4D subtype variants are ubiquitously present in all mammalian cells. In CNS all five PDE4D subtype variants are expressed in varying ratios and their activity is regulated in tandem with GPCRs stimulation. Peripheral tissues also exhibit differential expression of PDE4D variants. PDE4D1/D2 mRNA levels rise in response to an increase in cAMP. Short term regulation of PDE4D variants involved PKA, MAP kinases and Erk2 phosphorylation that results in rapid change in their enzymatic activities. Other regulatory mechanism involved protein protein interactions with cytoskeletal scaffolding proteins.
Expand 1 Items
Anti-PDE4D Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Cyclic AMP-dependent phosphodiesterase type D (PDE4D) family is comprise of 5 variants (PDE4D1, D2, D3, D4 and D5). One or more PDE4D subtype variants are ubiquitously present in all mammalian cells. In CNS all five PDE4D subtype variants are expressed in varying ratios and their activity is regulated in tandem with GPCRs stimulation. Peripheral tissues also exhibit differential expression of PDE4D variants. PDE4D1/D2 mRNA levels rise in response to an increase in cAMP. Short term regulation of PDE4D variants involved PKA, MAP kinases and Erk2 phosphorylation that results in rapid change in their enzymatic activities. Other regulatory mechanism involved protein protein interactions with cytoskeletal scaffolding proteins.
Expand 1 Items
Anti-ENTPD5 Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
Uridine diphosphatase (UDPase) that promotes protein N-glycosylation and ATP level regulation. UDP hydrolysis promotes protein N-glycosylation and folding in the endoplasmic reticulum, as well as elevated ATP consumption in the cytosol via an ATP hydrolysis cycle. Together with CMPK1 and AK1, constitutes an ATP hydrolysis cycle that converts ATP to AMP and results in a compensatory increase in aerobic glycolysis. The nucleotide hydrolyzing preference is GDP >IDP >UDP, but not any other nucleoside di-, mono- or triphosphates, nor thiamine pyrophosphate. Plays a key role in the AKT1-PTEN signaling pathway by promoting glycolysis in proliferating cells in response to phosphoinositide 3-kinase (PI3K) signaling.
Expand 1 Items
Anti-GNAT1 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.
Expand 1 Items
Anti-GNAT1 Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.
Expand 1 Items
Anti-GNAT1 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.
Expand 1 Items
Anti-GNAT1 Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.
Expand 1 Items
Anti-GNAT1 Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.
Expand 1 Items
Human AMPS ELISA Kit
Supplier: ANTIBODIES.COM
Human AMPS ELISA kit is a sandwich Enzyme-Linked Immunosorbent Assay (sELISA) designed for the in vitro quantitative determination of human AMPS in serum, plasma, tissue homogenates, and other biological fluids.
Expand 1 Items
Anti-GPR84 Rabbit Polyclonal Antibody
Supplier: Bioss
G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 84 (GPR84), a member of the GCPR 1 family, is an orphan GCPR expressed in bone marrow, brain, heart, muscle, colon, thymus, spleen, kidney, liver, placenta, intestine, lung and peripheral blood leukocytes. In activated T cells, GPR84 regulates early interleukin-4 (IL-4) gene expression.
Expand 1 Items
Anti-GNAT1 Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.
Expand 1 Items
Anti-GNAT1 Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.
Expand 1 Items
Anti-PDE4D Rabbit Polyclonal Antibody
Supplier: Bioss
Cyclic AMP-dependent phosphodiesterase type D (PDE4D) family is comprise of 5 variants (PDE4D1, D2, D3, D4 and D5). One or more PDE4D subtype variants are ubiquitously present in all mammalian cells. In CNS all five PDE4D subtype variants are expressed in varying ratios and their activity is regulated in tandem with GPCRs stimulation. Peripheral tissues also exhibit differential expression of PDE4D variants. PDE4D1/D2 mRNA levels rise in response to an increase in cAMP. Short term regulation of PDE4D variants involved PKA, MAP kinases and Erk2 phosphorylation that results in rapid change in their enzymatic activities. Other regulatory mechanism involved protein protein interactions with cytoskeletal scaffolding proteins.
Expand 1 Items
Anti-ADGRG7 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 128 (GPR128), a member of the secretin family of GCPRs with a GPS domain in its N-terminal domain, may mediate signaling processes to the interior of the cell via activation of G proteins. GPR128 represents an allopeptide which may be involved in T cell mediated transplant rejection as it is able to stimulate 2.102 T cells.
Expand 1 Items
Anti-PDE4D Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
Cyclic AMP-dependent phosphodiesterase type D (PDE4D) family is comprise of 5 variants (PDE4D1, D2, D3, D4 and D5). One or more PDE4D subtype variants are ubiquitously present in all mammalian cells. In CNS all five PDE4D subtype variants are expressed in varying ratios and their activity is regulated in tandem with GPCRs stimulation. Peripheral tissues also exhibit differential expression of PDE4D variants. PDE4D1/D2 mRNA levels rise in response to an increase in cAMP. Short term regulation of PDE4D variants involved PKA, MAP kinases and Erk2 phosphorylation that results in rapid change in their enzymatic activities. Other regulatory mechanism involved protein protein interactions with cytoskeletal scaffolding proteins.
Expand 1 Items
Anti-ENTPD5 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Uridine diphosphatase (UDPase) that promotes protein N-glycosylation and ATP level regulation. UDP hydrolysis promotes protein N-glycosylation and folding in the endoplasmic reticulum, as well as elevated ATP consumption in the cytosol via an ATP hydrolysis cycle. Together with CMPK1 and AK1, constitutes an ATP hydrolysis cycle that converts ATP to AMP and results in a compensatory increase in aerobic glycolysis. The nucleotide hydrolyzing preference is GDP >IDP >UDP, but not any other nucleoside di-, mono- or triphosphates, nor thiamine pyrophosphate. Plays a key role in the AKT1-PTEN signaling pathway by promoting glycolysis in proliferating cells in response to phosphoinositide 3-kinase (PI3K) signaling.
Expand 1 Items
Adenosine 5'-monophosphate disodium salt (AMP disodium salt) hydrate, Sigma-Aldrich®
Supplier: Merck
Adenosine 5'-monophosphate disodium salt (AMP disodium salt) hydrate, Sigma-Aldrich®
Expand 2 Items
AMP-Fluorescein conjugate calibrator
Supplier: AAT BIOQUEST
AMP-Fluorescein conjugate calibrator is desigend to use with AAT Bioquests' green fluorescent FAM-cAMP PDE IV substrate, a cAMP derivative that is a specific substrate for phosphodiesterase (PDE) IV.
Expand 1 Items
Anti-GPR84 Rabbit Polyclonal Antibody (Alexa Fluor® 750)
Supplier: Bioss
G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 84 (GPR84), a member of the GCPR 1 family, is an orphan GCPR expressed in bone marrow, brain, heart, muscle, colon, thymus, spleen, kidney, liver, placenta, intestine, lung and peripheral blood leukocytes. In activated T cells, GPR84 regulates early interleukin-4 (IL-4) gene expression.
Expand 1 Items
Anti-GPR84 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 84 (GPR84), a member of the GCPR 1 family, is an orphan GCPR expressed in bone marrow, brain, heart, muscle, colon, thymus, spleen, kidney, liver, placenta, intestine, lung and peripheral blood leukocytes. In activated T cells, GPR84 regulates early interleukin-4 (IL-4) gene expression.
Expand 1 Items
Anti-GPR84 Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 84 (GPR84), a member of the GCPR 1 family, is an orphan GCPR expressed in bone marrow, brain, heart, muscle, colon, thymus, spleen, kidney, liver, placenta, intestine, lung and peripheral blood leukocytes. In activated T cells, GPR84 regulates early interleukin-4 (IL-4) gene expression.
Expand 1 Items
Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).
Expand 1 Items
Anti-PDE4D Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Cyclic AMP-dependent phosphodiesterase type D (PDE4D) family is comprise of 5 variants (PDE4D1, D2, D3, D4 and D5). One or more PDE4D subtype variants are ubiquitously present in all mammalian cells. In CNS all five PDE4D subtype variants are expressed in varying ratios and their activity is regulated in tandem with GPCRs stimulation. Peripheral tissues also exhibit differential expression of PDE4D variants. PDE4D1/D2 mRNA levels rise in response to an increase in cAMP. Short term regulation of PDE4D variants involved PKA, MAP kinases and Erk2 phosphorylation that results in rapid change in their enzymatic activities. Other regulatory mechanism involved protein protein interactions with cytoskeletal scaffolding proteins.
Expand 1 Items
Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).
Expand 1 Items
Anti-ADGRG7 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 128 (GPR128), a member of the secretin family of GCPRs with a GPS domain in its N-terminal domain, may mediate signaling processes to the interior of the cell via activation of G proteins. GPR128 represents an allopeptide which may be involved in T cell mediated transplant rejection as it is able to stimulate 2.102 T cells.
Expand 1 Items
Anti-ADGRG7 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 128 (GPR128), a member of the secretin family of GCPRs with a GPS domain in its N-terminal domain, may mediate signaling processes to the interior of the cell via activation of G proteins. GPR128 represents an allopeptide which may be involved in T cell mediated transplant rejection as it is able to stimulate 2.102 T cells.
Expand 1 Items
Anti-ADGRG7 Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 128 (GPR128), a member of the secretin family of GCPRs with a GPS domain in its N-terminal domain, may mediate signaling processes to the interior of the cell via activation of G proteins. GPR128 represents an allopeptide which may be involved in T cell mediated transplant rejection as it is able to stimulate 2.102 T cells.