161379 Results for: "FOODCHEK SYSTEMS INC&"
Anti-PDE4B Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
This gene is a member of the type IV, cyclic AMP (cAMP)-specific, cyclic nucleotide phosphodiesterase (PDE) family. Cyclic nucleotides are important second messengers that regulate and mediate a number of cellular responses to extracellular signals, such as hormones, light, and neurotransmitters. The cyclic nucleotide phosphodiesterases (PDEs) regulate the cellular concentrations of cyclic nucleotides and thereby play a role in signal transduction. This gene encodes a protein that specifically hydrolyzes cAMP. Altered activity of this protein has been associated with schizophrenia and bipolar affective disorder. Alternate transcriptional splice variants, encoding different isoforms, have been characterized.
Expand 1 Items
AMP (2-Amino-2-methylpropanol) 99%
Supplier: Thermo Fisher Scientific
AMP (2-Amino-2-methylpropanol) 99%
Expand 3 Items
Adenosine 5'-monophosphate disodium salt (AMP disodium salt) ≥98% (by HPLC)
Supplier: ENZO LIFE SCIENCES
Adenosine 5'-monophosphate disodium salt (AMP disodium salt) ≥98% (by HPLC)
Expand 1 Items
Anti-SIK3 Chicken Polyclonal Antibody
Supplier: ProSci Inc.
SIK3 Antibody: Salt-inducible kinase family (SIKs) proteins are thought to have a role in steroidogenesis, adipogenesis or regulation of tumor malignancy. Three members (SIK1, SIK2 and SIK3) in the SIK family have been identified thus far. Their kinase domain sequences are closely homologous to those of AMP-activated protein kinase (AMPK). SIK3 can be phosphorylated by a tumor-suppressor kinase LKB1. It is highly and preferentially expressed in ovarian tumors but not in adenomyosis and leiomyoma and may be a potential diagnostic marker for ovarian cancers.
Expand 1 Items
Adenosine 5'-monophosphate monohydrate ≥96%
Supplier: Apollo Scientific
Adenosine 5'-monophosphate monohydrate ≥96%
Expand 2 Items
Anti-IMPAD1 Rabbit Polyclonal Antibody
Supplier: Bioss
This gene encodes a member of the inositol monophosphatase family. The encoded protein is localized to the Golgi apparatus and catalyzes the hydrolysis of phosphoadenosine phosphate (PAP) to adenosine monophosphate (AMP). Mutations in this gene are a cause of GRAPP type chondrodysplasia with joint dislocations, and a pseudogene of this gene is located on the long arm of chromosome 1.
Expand 1 Items
AMP (2-Amino-2-methylpropanol), (max. 5% H₂O) 95%
Supplier: Thermo Fisher Scientific
AMP (2-Amino-2-methylpropanol), (max. 5% H₂O) 95%
Expand 3 Items
Anti-ADSL Rabbit Polyclonal Antibody
Supplier: Bioss
Adenylsuccinate lyase is involved in both de novo synthesis of purines and formation of adenosine monophosphate from inosine monophosphate. It catalyzes two reactions in AMP biosynthesis: the removal of a fumarate from succinylaminoimidazole carboxamide (SAICA) ribotide to give aminoimidazole carboxamide ribotide (AICA) and removal of fumarate from adenylosuccinate to give AMP. Adenylosuccinase deficiency results in succinylpurinemic autism, psychomotor retardation, and , in some cases, growth retardation associated with muscle wasting and epilepsy. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].
Expand 1 Items
Anti-ADSL Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Adenylsuccinate lyase is involved in both de novo synthesis of purines and formation of adenosine monophosphate from inosine monophosphate. It catalyzes two reactions in AMP biosynthesis: the removal of a fumarate from succinylaminoimidazole carboxamide (SAICA) ribotide to give aminoimidazole carboxamide ribotide (AICA) and removal of fumarate from adenylosuccinate to give AMP. Adenylosuccinase deficiency results in succinylpurinemic autism, psychomotor retardation, and , in some cases, growth retardation associated with muscle wasting and epilepsy. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].
Expand 1 Items
Anti-ADSL Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
Adenylsuccinate lyase is involved in both de novo synthesis of purines and formation of adenosine monophosphate from inosine monophosphate. It catalyzes two reactions in AMP biosynthesis: the removal of a fumarate from succinylaminoimidazole carboxamide (SAICA) ribotide to give aminoimidazole carboxamide ribotide (AICA) and removal of fumarate from adenylosuccinate to give AMP. Adenylosuccinase deficiency results in succinylpurinemic autism, psychomotor retardation, and , in some cases, growth retardation associated with muscle wasting and epilepsy. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].
Expand 1 Items
Anti-ADSL Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
Adenylsuccinate lyase is involved in both de novo synthesis of purines and formation of adenosine monophosphate from inosine monophosphate. It catalyzes two reactions in AMP biosynthesis: the removal of a fumarate from succinylaminoimidazole carboxamide (SAICA) ribotide to give aminoimidazole carboxamide ribotide (AICA) and removal of fumarate from adenylosuccinate to give AMP. Adenylosuccinase deficiency results in succinylpurinemic autism, psychomotor retardation, and , in some cases, growth retardation associated with muscle wasting and epilepsy. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].
Expand 1 Items
Anti-Adenylosuccinate Lyase Rabbit Polyclonal Antibody (Alexa Fluor® 680)
Supplier: Bioss
Adenylsuccinate lyase is involved in both de novo synthesis of purines and formation of adenosine monophosphate from inosine monophosphate. It catalyzes two reactions in AMP biosynthesis: the removal of a fumarate from succinylaminoimidazole carboxamide (SAICA) ribotide to give aminoimidazole carboxamide ribotide (AICA) and removal of fumarate from adenylosuccinate to give AMP. Adenylosuccinase deficiency results in succinylpurinemic autism, psychomotor retardation, and , in some cases, growth retardation associated with muscle wasting and epilepsy. Two transcript variants encoding different isoforms have been found for this gene.
Expand 1 Items
Anti-PRKAA1 Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
The protein encoded by this gene belongs to the ser/thr protein kinase family. It is the catalytic subunit of the 5'-prime-AMP-activated protein kinase (AMPK). AMPK is a cellular energy sensor conserved in all eukaryotic cells. The kinase activity of AMPK is activated by the stimuli that increase the cellular AMP/ATP ratio. AMPK regulates the activities of a number of key metabolic enzymes through phosphorylation. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. Alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq].
Expand 1 Items
Anti-PRKAA1 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
The protein encoded by this gene belongs to the ser/thr protein kinase family. It is the catalytic subunit of the 5'-prime-AMP-activated protein kinase (AMPK). AMPK is a cellular energy sensor conserved in all eukaryotic cells. The kinase activity of AMPK is activated by the stimuli that increase the cellular AMP/ATP ratio. AMPK regulates the activities of a number of key metabolic enzymes through phosphorylation. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. Alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq].
Expand 1 Items
Anti-PRKAA1 Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
The protein encoded by this gene belongs to the ser/thr protein kinase family. It is the catalytic subunit of the 5'-prime-AMP-activated protein kinase (AMPK). AMPK is a cellular energy sensor conserved in all eukaryotic cells. The kinase activity of AMPK is activated by the stimuli that increase the cellular AMP/ATP ratio. AMPK regulates the activities of a number of key metabolic enzymes through phosphorylation. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. Alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq].
Expand 1 Items
Human recombinant lysine--tRNA ligase (from cells)
Supplier: ProSci Inc.
Lysine-tRNA ligase, also known as Lysyl-tRNA synthetase, LysRS, KARS and KIAA0070, belongs to the class-II aminoacyl-tRNA synthetase family. The N-terminal cytoplasmic domain (1-65) is a functional tRNA-binding domain, which is required for nuclear localisation, is involved in the interaction with DARS, but has a repulsive role in the binding to EEF1A1. A central domain (208-259) is involved in homodimerisation and is required for interaction with HIV-1 GAG and incorporation into virions. KARS catalyses the specific attachment of an amino acid to its cognate tRNA in a two step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. Defects in KARS are the cause of Charcot-Marie-Tooth disease recessive intermediate type B (CMTRIB).
Expand 1 Items
Anti-PRKAA2 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
The protein encoded by this gene is a catalytic subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. Studies of the mouse counterpart suggest that this catalytic subunit may control whole-body insulin sensitivity and is necessary for maintaining myocardial energy homeostasis during ischemia.
Expand 1 Items
Adenosine-5'-monophosphoric acid (AMP), (max. 6% H₂O) 99% (dry weight)
Supplier: Thermo Fisher Scientific
a useful ligand determinant that facilitate the binding of APS reductase inhibitors and activates adenosine receptor agonists.
Expand 2 Items
Anti-ADSL Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
Adenylsuccinate lyase is involved in both de novo synthesis of purines and formation of adenosine monophosphate from inosine monophosphate. It catalyzes two reactions in AMP biosynthesis: the removal of a fumarate from succinylaminoimidazole carboxamide (SAICA) ribotide to give aminoimidazole carboxamide ribotide (AICA) and removal of fumarate from adenylosuccinate to give AMP. Adenylosuccinase deficiency results in succinylpurinemic autism, psychomotor retardation, and , in some cases, growth retardation associated with muscle wasting and epilepsy. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].
Expand 1 Items
Cyclic AMP Select ELISA Kit
Supplier: Cayman Chemical
For direct quantification of cAMP from a variety of biological samples.
Expand 2 Items
Anti-ADSL Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Adenylsuccinate lyase is involved in both de novo synthesis of purines and formation of adenosine monophosphate from inosine monophosphate. It catalyzes two reactions in AMP biosynthesis: the removal of a fumarate from succinylaminoimidazole carboxamide (SAICA) ribotide to give aminoimidazole carboxamide ribotide (AICA) and removal of fumarate from adenylosuccinate to give AMP. Adenylosuccinase deficiency results in succinylpurinemic autism, psychomotor retardation, and , in some cases, growth retardation associated with muscle wasting and epilepsy. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].
Expand 1 Items
Anti-ADSL Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Adenylsuccinate lyase is involved in both de novo synthesis of purines and formation of adenosine monophosphate from inosine monophosphate. It catalyzes two reactions in AMP biosynthesis: the removal of a fumarate from succinylaminoimidazole carboxamide (SAICA) ribotide to give aminoimidazole carboxamide ribotide (AICA) and removal of fumarate from adenylosuccinate to give AMP. Adenylosuccinase deficiency results in succinylpurinemic autism, psychomotor retardation, and , in some cases, growth retardation associated with muscle wasting and epilepsy. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008].
Expand 1 Items
Anti-PRKAG3 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.
Expand 1 Items
Anti-PRKAG3 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.
Expand 1 Items
Anti-PRKAG3 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.
Expand 1 Items
Anti-PRKAG3 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.
Expand 1 Items
Anti-GPAT1 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
GPAT1 Antibody: Glycerol-3-phosphate acyltransferase 1 (GPAT1), one of four known GPAT isoforms, is located on the mitochondrial outer membrane, allowing reciprocal regulation with carnitine palmitoyltransferase-1. It is thought to be critical for the development of hepatic steatosis; steatosis triggered by GPAT1 overexpression leads to hepatic and possibly peripheral insulin resistance. GPAT1 is transcriptionally upregulated by insulin and sterol regulatory element binding protein (SREBP-1) and downregulated by AMP-activated protein kinase. Mice deficient in GPAT1 exhibit decreased triacylglycerol (TAG) in cardiomyocytes even in high-fat diets, suggesting that GPAT1 contributes significantly to TAG accumulation in heart tissue during lipogenic or high fat diets. At least two isoforms of GPAT1 are known to exist.
Expand 1 Items
Anti-PRKAG3 Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.
Expand 1 Items
Anti-PRKAG3 Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (PRKAA1 or PRKAA2) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. ADP also stimulates phosphorylation, without stimulating already phosphorylated catalytic subunit. ATP promotes dephosphorylation of catalytic subunit, rendering the AMPK enzyme inactive.