"drives"
Inverted microscope platform, DMi8
Supplier: LEICA MICROSYSTEMS
Being ahead of the competition is what drives your business. No matter if you work in metallography, medical device manufacturing or microelectronics, speed is essential. Tailor this highly modular inverted microscope to your needs. Combine Leica optical quality, a wide range of contrast modes, and intuitive software in one system to help you speed up your workflow.
Expand 1 Items
Anti-PRDX1 Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Involved in redox regulation of the cell. Reduces peroxides with reducing equivalents provided through the thioredoxin system but not from glutaredoxin. May play an important role in eliminating peroxides generated during metabolism. Might participate in the signaling cascades of growth factors and tumor necrosis factor-alpha by regulating the intracellular concentrations of H(2)O(2). Reduces an intramolecular disulfide bond in GDPD5 that gates the ability to GDPD5 to drive postmitotic motor neuron differentiation (By similarity).
Expand 1 Items
Anti-STAT1 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors. Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus. ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state. In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated. It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state. Becomes activated in response to KITLG/SCF and KIT signaling. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4.
Expand 1 Items
Anti-STAT1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors. Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus. ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state. In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated. It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state. Becomes activated in response to KITLG/SCF and KIT signaling. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4.
Expand 1 Items
Anti-STAT1 Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors. Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus. ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state. In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated. It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state. Becomes activated in response to KITLG/SCF and KIT signaling. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4.
Expand 1 Items
Anti-STAT1 Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors. Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus. ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state. In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated. It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state. Becomes activated in response to KITLG/SCF and KIT signaling. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4.
Expand 1 Items
VWR®, Magnetic Stirrers, Advanced Large Capacity
Supplier: VWR Collection
These microprocessor-controlled, large capacity stirrers are ideal for high volume applications. There are two models to choose from depending on capacity required. Their powerful magnetic drive is capable of mixing high viscosity materials, the stainless steel base offers durability and added stability. Ideal for biotech, pharmaceutical, university and industrial pilot-scale applications. Other applications include mixing viscous materials, polymers and pilot-scale work.
Expand 2 Items
Masterflex® Pump and Dispensing System Accessories, Avantor®
Supplier: Avantor Fluid Handling
Make the most of your Masterflex® pump with connection cables, replacement parts, and other accessories.
Expand 3 Items
Orbital multi-platform shaker, PSU-20i
Supplier: GRANT INSTRUMENTS
Powerful and efficient microprocessor-controlled, multifunctional orbital shaker with rotation, reciprocation and vibration. The shaker has a reliable direct drive system, accommodates loads up to 8 kg, and enables mixing optimisation whether in flasks, beakers, Petri dishes or other laboratory vessels. The PSU-20i is easy to operate, with simple set-up of multi-segment programs via push buttons and the 2-line LCD status display.
Expand 1 Items
Microfine grinder, MF 10 basic
Supplier: IKA
Continuously operating universal grinder with powerful drive. When using the grinding heads, the processed material passes through an interchangeable stainless steel sieve. The ground material can be collected using a vessel with NS 29 standard ground joint.
Expand 3 Items
Anti-PRDX1 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Involved in redox regulation of the cell. Reduces peroxides with reducing equivalents provided through the thioredoxin system but not from glutaredoxin. May play an important role in eliminating peroxides generated during metabolism. Might participate in the signaling cascades of growth factors and tumor necrosis factor-alpha by regulating the intracellular concentrations of H(2)O(2). Reduces an intramolecular disulfide bond in GDPD5 that gates the ability to GDPD5 to drive postmitotic motor neuron differentiation (By similarity).
Expand 1 Items
Platform rocker, PMR-30
Supplier: GRANT INSTRUMENTS
The compact and highly functional PMR-30 variable speed, fixed angle platform rocker is ideally suited for personal use, it provides a smooth side to side rocking motion for gentle sample agitation in tubes, culture flasks, dishes and boxes. Applications include gel staining, destaining, antibody staining, washes, hybridisations, and blots. The reliable motor with direct drive mechanism produces regulated and reproducible rocking throughout the speed range.
Expand 1 Items
Magnetic stirrer, cuvetteMIXdrive 1
Supplier: 2MAG
This miniaturised stirrer for cuvettes is ideal for system integration e.g. in a spectrophotometer. The hermetically sealed stainless steel housing is water, germ and dust-proof. Operating temperatures up to 50 °C. M1.4 thread is integrated at the base.
Expand 2 Items
Ultra low temperature freezers, with 4 inner doors, –40 °C, TDE series
Supplier: Thermo Scientific
Thermo Scientific™ TDE Series ‒40 °C ultra-low temperature freezers, powered by H-drive, feature three upright models, maximizing storage capacity from 40000 up to 60000 2 ml vials. The TDE Series is a sustainable and reliable solution with ultimate sample security and operational savings for every laboratory.
Expand 3 Items
Anti-PDCD4 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity).
Expand 1 Items
Anti-STAT1 Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors. Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus. ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state. In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated. It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state. Becomes activated in response to KITLG/SCF and KIT signaling. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4.



