3567 Results for: "PIPES+disodium+salt&pageNo=71&view=easy"
VWR® Visiscope® IT407 FL Inverted Trinocular Fluorescence Microscopes
Supplier: VWR Collection
Routine inverted fluorescence microscopes for transmitted brightfield, phase contrast (optional for IT407 FL4 and IT407 FLD4 FLD) and fluorescence observations with IOS LWD W-Plan PH or U-Plan F objectives. Ideal for tissue culture research in clinical and biotechnology laboratories.
Expand 3 Items
VOLLSICHTBRILLE ULTRA-VISION 1ST 1 * 1 ST
Supplier: Roth Carl
VOLLSICHTBRILLE ULTRA-VISION 1ST 1 * 1 ST
Expand 1 Items
Industrial jacket, Fristads® PR54-420, design A, navy blue
Supplier: FRISTADS KANSAS
Thanks to its durability and high degree of comfort, the PR54 jacket is perfectly suited to workshops and industrial and service enterprises. The material is made from 65% polyester and 35% cotton. The inside is brushed and as a result conveys a pleasantly comfortably cotton feeling. The outside is also resistant to the roughest demands and will not fade even after countless washes.
Expand 1 Items
Labels and tape for BBP®35 and BBP®37 thermal transfer benchtop printers
Supplier: Brady
A variety of polyester and specialty materials for thermal transfer printing in wide format rolls designed for shape cutting multiple labels out of a single continuous roll.
Expand 1 Items
Industrial jacket, Fristads® PR54-420, design B, royal blue
Supplier: FRISTADS KANSAS
Thanks to its durability and high degree of comfort, the PR54 jacket is perfectly suited to workshops and industrial and service enterprises. The material is made from 65% polyester and 35% cotton. The inside is brushed and as a result conveys a pleasantly comfortably cotton feeling. The outside is also resistant to the roughest demands and will not fade even after countless washes.
Expand 1 Items
PMA (Propidium monoazide) 20 mM in water DNA/RNA binding dye
Supplier: Biotium
PMA (propidium monoazide) dye is a DNA modifier invented by scientists at Biotium. It is a photo-reactive dye that binds to dsDNA with high affinity. Upon photolysis with visible light, PMA dye covalently attaches itself to dsDNA.
Expand 1 Items
Cabinet c-10e cabinet only - add 4w el lamp 1 * 1 items
Supplier: UVP ULTRA VIOLET PRODUCTS
Cabinet c-10e cabinet only - add 4w el lamp 1 * 1 items
Expand 1 Items
SEKUROKA-UV-VOLLSICHTBRILLE ULTRAS. 1ST 1 * 1 ST
Supplier: Roth Carl
SEKUROKA-UV-VOLLSICHTBRILLE ULTRAS. 1ST 1 * 1 ST
Expand 1 Items
SEKUROKA-UV-VOLLSICHTBRILLE ULTRAS. 1ST 1 * 1 ST
Supplier: Roth Carl
SEKUROKA-UV-VOLLSICHTBRILLE ULTRAS. 1ST 1 * 1 ST
Expand 1 Items
Resusable half mask respirator, speaking diaphragm, HF-800SD series, Secure Click™
Supplier: 3M
Designed with smart and intuitive features, the 3M™ Secure Click™ Half Mask Reusable Respirator is simple, comfortable and reliable. Available in three sizes: Small, medium and large. These respirators all come with an optional speaking diaphragm.
Expand 3 Items
Anti-GPR71 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
Anti-GPR71 Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
Masterflex® I/P® MasterSense® Process Pumps with I/P® Rapid-Load® Pump Head
Supplier: Avantor Fluid Handling
Versatile pumps for process applications - with an intuitive touch-screen interface and advanced connectivity. This drive offers a broad flow range, from 0,0006 to 19 LPM, adaptable to a variety of applications and workflows. The drive housing is constructed of 316 stainless steel - IP 66 and NEMA 4X rated for washdown.
Expand 8 Items
Anti-GPR71 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
Anti-GPR71 Rabbit Polyclonal Antibody
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
Analytical balances, Explorer®
Supplier: OHAUS
A range of four-place balances that incorporate a touch screen, advanced weighing and proximity sensor technologies. The easy to use control unit can be mounted on a base, above a base on an optional column, on a wall, or remotely (up to 3 metres distance with an optional cable). The touch screen display, with universal icons and informative prompts, simplifies set-up functions and basic operation. The operator has the added choice to use proximity sensors for hands-free operation when handling sensitive samples. These balances have multiple application modes from basic weighing to SQC applications, together with short stabilisation times and optimised performance specifications.
Expand 5 Items
Anti-GPR71 Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
Anti-GPR71 Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
Anti-GPR71 Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
Masterflex® MasterSense® Gear Pump Systems
Supplier: Avantor Fluid Handling
Versatile gear pump systems for high-accuracy fluid delivery - with an intuitive touch-screen interface.
Expand 3 Items
Masterflex® L/S® MasterSense® Drives, Avantor®
Supplier: Avantor Fluid Handling
Versatile pumps for accurate fluid delivery – with an intuitive touch-screen interface.
Expand 4 Items
Anti-GPR71 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
Anti-GPR71 Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
Anti-GPR71 Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
Anti-GPR71 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
Expand 1 Items
OpenLab CDS Software
Supplier: VWR Collection
Agilent OpenLab CDS is the next generation chromatography data system, designed for ease of use and productivity. OpenLab CDS offers the most comprehensive instrument control and data acquisition for Hitachi HPLC and amino acid analysers. In addition, it supports an expanded array of instrumentation from other vendors, for example Agilent LC, GC and LC/MS. Whether you like to control a single instrument or a huge network of different analytical instruments, OpenLab CDS grows with your needs.
Expand 16 Items
HPLC columns, LiChrospher®
Supplier: Merck
LiChrospher® is Merck's reliable and versatile, traditionally-produced, spherical silica. LiChrospher® is available with different modifications.
Expand 1 Items
Incubating Shakers, INC 125 FS digital (SP20 and SP25)
Supplier: IKA
The INC 125 FS digital incubator shakers have a removable shaker platform. Without the platform, the units can be used as a normal incubator. The large inner chamber with a volume of 125 L offers space for up to 6 grid shelves (without shaker platform). Thanks to high temperature stability and a uniform shaking motion that improves oxygenation, the incubator shakers are the perfect solution for cell cultivation and other microbiological applications.
Expand 2 Items
Ultra low temperature freezers, with 4 inner doors, –40 °C, TDE series
Supplier: Thermo Scientific
Thermo Scientific™ TDE Series ‒40 °C ultra-low temperature freezers, powered by H-drive, feature three upright models, maximizing storage capacity from 40000 up to 60000 2 ml vials. The TDE Series is a sustainable and reliable solution with ultimate sample security and operational savings for every laboratory.
Expand 3 Items
Masterflex® I/P® MasterSense® Drives, Avantor®
Supplier: Avantor Fluid Handling
Versatile pumps for process applications – with an intuitive touch-screen interface and advanced connectivity.