71223 Results for: "(+)-alpha-Methoxy-alpha-(trifluoromethyl)phenylacetyl+chloride"
ZIP BAG write on sample bag, re-sealable, 110x137mm, pk1000 1 * 1.000 items
Supplier: Alpha Packaging
ZIP BAG write on sample bag, re-sealable, 110x137mm, pk1000 1 * 1.000 items
Expand 1 Items
cAMP-dependent Protein Kinase II regulatory subunit (Hu Bov Por) 100UG 1 * 100 µG
Supplier: Chemicon
cAMP-dependent Protein Kinase II regulatory subunit (Hu Bov Por) 100UG 1 * 100 µG
Expand 1 Items
Tumor Necrosis Factor-A Antagonist 1 * 1 mg
Supplier: Merck Millipore (Calbiochem)
Tumor Necrosis Factor-A Antagonist 1 * 1 mg
Expand 1 Items
Anti-PRKAA2 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2.
Expand 1 Items
Anti-INSR Rabbit Polyclonal Antibody (Alexa Fluor® 680)
Supplier: Bioss
Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognise different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway.
Expand 1 Items
a-Naphthyl acetate 1 * 25 g
Supplier: Roth Carl
a-Naphthyl acetate 1 * 25 g
Expand 1 Items
a-D(+)-Glucose monohydrate 1 * 5 kg
Supplier: Roth Carl
a-D(+)-Glucose monohydrate 1 * 5 kg
Expand 1 Items
Rat ITGA2&ITGB1 Heterodimer Protein, His Tag&Tag Free (IT1-R52W9) is expressed from human 293 cells (HEK293). It contains AA Tyr 27 - Gly 1130 (ITGA2) & Gln 21 - Asp 729 (ITGB1) (Accession # A0A0G2K470-1 (ITGA2) & P49134-1 (ITGB1)). 1 * 100 µG
Supplier: ACRO Biosystems
Rat ITGA2&ITGB1 Heterodimer Protein, His Tag&Tag Free (IT1-R52W9) is expressed from human 293 cells (HEK293). It contains AA Tyr 27 - Gly 1130 (ITGA2) & Gln 21 - Asp 729 (ITGB1) (Accession # A0A0G2K470-1 (ITGA2) & P49134-1 (ITGB1)). 1 * 100 µG
Expand 1 Items
RACK 4-WAY INTERLOCKING COMBIRACK ASSORTED COLOURS AUTOCLAVABLE PACK OF 5 WITH 4 ORIENTATIONS TO ACCOMMODATE 0.5ml 1.5ml 2.0ml 15ml and 50ml 1 * 5 items
Supplier: Alpha Laboratories
RACK 4-WAY INTERLOCKING COMBIRACK ASSORTED COLOURS AUTOCLAVABLE PACK OF 5 WITH 4 ORIENTATIONS TO ACCOMMODATE 0.5ml 1.5ml 2.0ml 15ml and 50ml 1 * 5 items
Expand 1 Items
SCREW CAP APEX BLUE NS PK OF 500 1 * 500 items
Supplier: Alpha Laboratories
SCREW CAP APEX BLUE NS PK OF 500 1 * 500 items
Expand 1 Items
Pipette Graduated unsterilepolypropylene (pk/500) 1 * 500 items
Supplier: Alpha Laboratories
Pipette Graduated unsterilepolypropylene (pk/500) 1 * 500 items
Expand 1 Items
Tip Eppendorf-fit Graduated 1000-10000µl Racked Sterile 161mm in length 2 racks of 25 for accurate measurement of large volume solut ions 1 * 50 items
Supplier: Alpha Laboratories
Tip Eppendorf-fit Graduated 1000-10000µl Racked Sterile 161mm in length 2 racks of 25 for accurate measurement of large volume solut ions 1 * 50 items
Expand 1 Items
0.5ML THIN WALL FLAT CAP PCR TUBE NATURAL 1 * 1.000 items
Supplier: Alpha Laboratories
0.5ML THIN WALL FLAT CAP PCR TUBE NATURAL 1 * 1.000 items
Expand 1 Items
Rabbit anti-NF-Y A subunit (Hu Ms) polyclonal antibody (Chemicon: AB3012) 1 * 100 µG
Supplier: Chemicon
Rabbit anti-NF-Y A subunit (Hu Ms) polyclonal antibody (Chemicon: AB3012) 1 * 100 µG
Expand 1 Items
BEUTEL 95KPA C3 GRÖßE 305 X 403 MM FÜR DEN TRANSPORT VON BIOLOGISCHEN PROBE
Supplier: Alpha Laboratories
BEUTEL 95KPA C3 GRÖßE 305 X 403 MM FÜR DEN TRANSPORT VON BIOLOGISCHEN PROBE
Expand 1 Items
RACK 100-POSITION FREEZER RACK HINGED LID 10 X 10 ARRAY ASSORTED TEMPERATURE 90C TO 120C PACK OF 5 FITS 1.5ML 2.0ML MICROTUBES OR 1.2ML CRYOVIALS 1 * 1 items
Supplier: Alpha Laboratories
RACK 100-POSITION FREEZER RACK HINGED LID 10 X 10 ARRAY ASSORTED TEMPERATURE 90C TO 120C PACK OF 5 FITS 1.5ML 2.0ML MICROTUBES OR 1.2ML CRYOVIALS 1 * 1 items
Expand 1 Items
Anti-PRKAA1 Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2.
Expand 1 Items
Anti-INSR Rabbit Polyclonal Antibody (Alexa Fluor® 750)
Supplier: Bioss
Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognise different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway.
Expand 1 Items
Anti-INSR Rabbit Polyclonal Antibody (Alexa Fluor® 750)
Supplier: Bioss
Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognise different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway.
Expand 1 Items
Serological Pipette Graduated 5ml Plastic Plugged Sterile Sterilin Individually Paper Peel Wrapped 4 Packs of 50 ideal for tissue c ulture work 1 * 200 items
Supplier: Alpha Laboratories
Serological Pipette Graduated 5ml Plastic Plugged Sterile Sterilin Individually Paper Peel Wrapped 4 Packs of 50 ideal for tissue c ulture work 1 * 200 items
Expand 1 Items
Anti-PRKAA1 Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2.
Expand 1 Items
Anti-PRKAA2 Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2.
Expand 1 Items
Anti-PRKAA2 Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2.
Expand 1 Items
CALIBRATED MICROPIPETTES GLASS CAPILLARIES WITH EDTA 100 UL INCLUDES 15 INCH ASPIRATOR TUBE ASSEMBLY VIAL OF 250 FOR MICRO-VOLUME TRANSFER 1 * 250 items
Supplier: Alpha Laboratories
CALIBRATED MICROPIPETTES GLASS CAPILLARIES WITH EDTA 100 UL INCLUDES 15 INCH ASPIRATOR TUBE ASSEMBLY VIAL OF 250 FOR MICRO-VOLUME TRANSFER 1 * 250 items
Expand 1 Items
a-D(+)-Glucose monohydrate 1 * 1 kg
Supplier: Roth Carl
a-D(+)-Glucose monohydrate 1 * 1 kg
Expand 1 Items
Tip 1-200µl Universal Bevelled Tip Graduated Non-Sterile 50mm in length Fastrak® Tip Refill System 10 racks of 96 in a refill tower 1 * 960 items
Supplier: Alpha Laboratories
Tip 1-200µl Universal Bevelled Tip Graduated Non-Sterile 50mm in length Fastrak® Tip Refill System 10 racks of 96 in a refill tower 1 * 960 items
Expand 1 Items
Anti-PRKAA1 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2.
Expand 1 Items
Empty Racks for 10, 20, 200 and 250µl Tips Every rack includes a patented lock-down system 1 * 10 items
Supplier: Alpha Laboratories
Empty Racks for 10, 20, 200 and 250µl Tips Every rack includes a patented lock-down system 1 * 10 items