Order Entry
Northern Ireland
ContactUsLinkComponent
188789 results for "Transport+Coolers&pageNo=50&view=easy"

188789 Results for: "Transport+Coolers&pageNo=50&view=easy"

Anti-RPS3 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Involved in translation as a component of the 40S small ribosomal subunit (PubMed:8706699). Has endonuclease activity and plays a role in repair of damaged DNA (PubMed:7775413). Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA (PubMed:15707971). Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS) (PubMed:14706345). Has also been shown to bind with similar affinity to intact and damaged DNA (PubMed:18610840). Stimulates the N-glycosylase activity of the base excision protein OGG1 (PubMed:15518571). Enhances the uracil excision activity of UNG1 (PubMed:18973764). Also stimulates the cleavage of the phosphodiester backbone by APEX1 (PubMed:18973764). When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage (PubMed:23911537). Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide (PubMed:17049931). Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes (PubMed:18045535). Represses its own translation by binding to its cognate mRNA (PubMed:20217897). Binds to and protects TP53/p53 from MDM2-mediated ubiquitination (PubMed:19656744). Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization (PubMed:23131551). Involved in induction of apoptosis through its role in activation of CASP8 (PubMed:14988002). Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5 (PubMed:20605787). Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation (PubMed:22510408).

Expand 1 Items
Loading...

Anti-RPS3 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Involved in translation as a component of the 40S small ribosomal subunit (PubMed:8706699). Has endonuclease activity and plays a role in repair of damaged DNA (PubMed:7775413). Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA (PubMed:15707971). Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS) (PubMed:14706345). Has also been shown to bind with similar affinity to intact and damaged DNA (PubMed:18610840). Stimulates the N-glycosylase activity of the base excision protein OGG1 (PubMed:15518571). Enhances the uracil excision activity of UNG1 (PubMed:18973764). Also stimulates the cleavage of the phosphodiester backbone by APEX1 (PubMed:18973764). When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage (PubMed:23911537). Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide (PubMed:17049931). Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes (PubMed:18045535). Represses its own translation by binding to its cognate mRNA (PubMed:20217897). Binds to and protects TP53/p53 from MDM2-mediated ubiquitination (PubMed:19656744). Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization (PubMed:23131551). Involved in induction of apoptosis through its role in activation of CASP8 (PubMed:14988002). Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5 (PubMed:20605787). Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation (PubMed:22510408).

Expand 1 Items
Loading...

Anti-B4GALT7 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.

Expand 1 Items
Loading...

Anti-B4GALT7 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.

Expand 1 Items
Loading...

Anti-TGFBR3 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

Membrane Receptors Transforming growth factor beta is a multifunctional cytokine known to modulate several tissue development and repair processes, including cell differentiation, cell cycle progression, cellular migration, adhesion, and extracellular matrix production. There are 3 forms encoded by separate genes TGFB1, TGFB2, and TGFB3. The diverse effects of TGF beta are mediated by the TGF beta receptors and cell surface binding proteins. In addition to type I TGF beta receptor (TGFBR1) and type II (TFGBR2), type III (TGF beta III receptor) has been identified. It is a glycoprotein that binds TGF beta and exists in both a membrane bound and a soluble form. It may serve as a receptor accessory molecule in both the TGF beta and fibroblast growth factor systems. TGF beta III receptor lacks a recognizable signaling domain and has no clearly defined role in TGF beta signaling. Endothelial cells undergoing epithelial mesenchymal transformation express TGF beta III receptor, and TGF beta III receptor specific antisera inhibits mesenchyme formation and migration. Misexpression of TGF beta III receptor in nontransforming ventricular endothelial cells conferrs transformation in response to TGFB2. These results support a model where TGF beta III receptor localizes transformation in the heart and plays an essential, nonredundant role in TGF beta signaling. TGF beta III receptor, or beta glycan, can function as an inhibin coreceptor with ActRII. TGF beta III receptor binds inhibin with high affinity and enhances binding in cells coexpressing ActRII and TGF beta III receptor. Inhibin forms crosslinked complexes with both recombinant and endogenously expressed TGF beta III receptor and ActRII. TGF beta III receptor confers inhibin sensitivity to cell lines that otherwise respond poorly to this hormone.

Expand 1 Items
Loading...

Anti-B4GALT7 Rabbit Polyclonal Antibody

Supplier: Bioss

β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.

Expand 1 Items
Loading...
Peristaltic pump drives

Peristaltic pump drives

Supplier: Heidolph Instruments GmbH & Co.KG

Models PD 5201 and PD 5206 for advanced requirements. Peristaltic pumps are ideal for transporting and metering aggressive, abrasive, or corrosive solutions, and also for sterile media under low pressure. The medium to be transported only comes into contact with the tubing, so there is no contamination. Suitable for transporting highly viscous media up to 10000 mPas. The pumps are self-priming without seals or valves. Can be used in the food industry for filtering and separating, for water treatment, in biotechnology and routine laboratory applications. Media can be transported under pressure and under vacuum. Maintenance-free motors ensure long service life. Quantities displaced by the pump heads are stored in the program depending on the individual tubes used, and are shown in the digital display. Software may be ordered separately as an accessory. The pump drive is microprocessor-controlled. Equipped with RS232 digital interface; speed, metered quantity, flow rate, pause, and tube dimension can be controlled. Digital display of speed (min⁻¹) and flow rate (ml/min). Digital display of displacement volume (ml) in the case of volume metering. Intermittent metering is available with adjustable pause times. A metered volume can also be specified in addition to the flow rate display. Extremely simple calibration of displacement volume (ml) and flow rate (ml/min).

Expand 3 Items
Loading...
Anti-PADI2 Rabbit Polyclonal Antibody

Anti-PADI2 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

PADI2 encodes a member of the peptidyl arginine deiminase family of enzymes, which catalyze the post-translational deimination of proteins by converting arginine residues into citrullines in the presence of calcium ions. The family members have distinct substrate specificities and tissue-specific expression patterns. The type II enzyme is the most widely expressed family member. Known substrates for this enzyme include myelin basic protein in the central nervous system and vimentin in skeletal muscle and macrophages. PADI2 is thought to play a role in the onset and progression of neurodegenerative human disorders, including Alzheimer disease and multiple sclerosis, and it has also been implicated in glaucoma pathogenesis.This gene encodes a member of the peptidyl arginine deiminase family of enzymes, which catalyze the post-translational deimination of proteins by converting arginine residues into citrullines in the presence of calcium ions. The family members have distinct substrate specificities and tissue-specific expression patterns. The type II enzyme is the most widely expressed family member. Known substrates for this enzyme include myelin basic protein in the central nervous system and vimentin in skeletal muscle and macrophages. This enzyme is thought to play a role in the onset and progression of neurodegenerative human disorders, including Alzheimer disease and multiple sclerosis, and it has also been implicated in glaucoma pathogenesis. This gene exists in a cluster with four other paralogous genes. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Anti-CYP1A1 Rabbit Polyclonal Antibody

Anti-CYP1A1 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

CYP1A1 is a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by some polycyclic aromatic hydrocarbons (PAHs), some of which are found in cigarette smoke. The enzyme's endogenous substrate is unknown; however, it is able to metabolize some PAHs to carcinogenic intermediates. CYP1A1 has been associated with lung cancer risk. This gene, CYP1A1, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by some polycyclic aromatic hydrocarbons (PAHs), some of which are found in cigarette smoke. The enzyme's endogenous substrate is unknown; however, it is able to metabolize some PAHs to carcinogenic intermediates. The gene has been associated with lung cancer risk. A related family member, CYP1A2, is located approximately 25 kb away from CYP1A1 on chromosome 15. Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the sequence consistent with the reference genome assembly. The genomic coordinates used for the transcript record were based on alignments. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Anti-E2F1 Rabbit Polyclonal Antibody

Anti-E2F1 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

The protein encoded by E2F1 is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. This protein binds preferentially to retinoblastoma protein pRB in a cell-cycle dependent manner. It can mediate both cell proliferation and p53-dependent/independent apoptosis. The protein encoded by this gene is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. This protein and another 2 members, E2F2 and E2F3, have an additional cyclin binding domain. This protein binds preferentially to retinoblastoma protein pRB in a cell-cycle dependent manner. It can mediate both cell proliferation and p53-dependent/independent apoptosis. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Anti-GSTM1 Rabbit Polyclonal Antibody

Anti-GSTM1 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Cytosolic and membrane-bound forms of glutathione S-transferase are two distinct supergene families. At present, eight distinct classes of the soluble cytoplasmic mammalian glutathione S-transferases have been identified: alpha, kappa, mu, omega, pi, sigma, theta and zeta. GSTM1 a glutathione S-transferase that belongs to the mu class. The mu class of enzymes functions in the detoxification of electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress, by conjugation with glutathione.Cytosolic and membrane-bound forms of glutathione S-transferase are encoded by two distinct supergene families. At present, eight distinct classes of the soluble cytoplasmic mammalian glutathione S-transferases have been identified: alpha, kappa, mu, omega, pi, sigma, theta and zeta. This gene encodes a glutathione S-transferase that belongs to the mu class. The mu class of enzymes functions in the detoxification of electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress, by conjugation with glutathione. The genes encoding the mu class of enzymes are organized in a gene cluster on chromosome 1p13.3 and are known to be highly polymorphic. These genetic variations can change an individual's susceptibility to carcinogens and toxins as well as affect the toxicity and efficacy of certain drugs. Null mutations of this class mu gene have been linked with an increase in a number of cancers, likely due to an increased susceptibility to environmental toxins and carcinogens. Multiple protein isoforms are encoded by transcript variants of this gene.

Expand 1 Items
Loading...
Anti-PAX3 Rabbit Polyclonal Antibody

Anti-PAX3 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

PAX3 is a member of the paired box (PAX) family of transcription factors. Members of the PAX family typically contain a paired box domain and a paired-type homeodomain. These genes play critical roles during fetal development. Mutations in paired box gene 3 are associated with Waardenburg syndrome, craniofacial-deafness-hand syndrome, and alveolar rhabdomyosarcoma. The translocation t (2;13) (q35;q14), which represents a fusion between PAX3 and the forkhead gene, is a frequent finding in alveolar rhabdomyosarcoma.This gene is a member of the paired box (PAX) family of transcription factors. Members of the PAX family typically contain a paired box domain and a paired-type homeodomain. These genes play critical roles during fetal development. Mutations in paired box gene 3 are associated with Waardenburg syndrome, craniofacial-deafness-hand syndrome, and alveolar rhabdomyosarcoma. The translocation t (2;13) (q35;q14), which represents a fusion between PAX3 and the forkhead gene, is a frequent finding in alveolar rhabdomyosarcoma. Alternative splicing results in transcripts encoding isoforms with different C-termini.This gene is a member of the paired box (PAX) family of transcription factors. Members of the PAX family typically contain a paired box domain and a paired-type homeodomain. These genes play critical roles during fetal development. Mutations in paired box gene 3 are associated with Waardenburg syndrome, craniofacial-deafness-hand syndrome, and alveolar rhabdomyosarcoma. The translocation t (2;13) (q35;q14), which represents a fusion between PAX3 and the forkhead gene, is a frequent finding in alveolar rhabdomyosarcoma. Alternative splicing results in transcripts encoding isoforms with different C-termini.

Expand 1 Items
Loading...
Anti-HNRNPH1 Rabbit Polyclonal Antibody

Anti-HNRNPH1 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

HNRPH1 belongs to the subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). The hnRNPs are RNA binding proteins and they complex with heterogeneous nuclear RNA (hnRNA). These proteins are associated with pre-mRNAs in the nucleus and appear to influence pre-mRNA processing and other aspects of mRNA metabolism and transport. While all of the hnRNPs are present in the nucleus, some seem to shuttle between the nucleus and the cytoplasm. The hnRNP proteins have distinct nucleic acid binding properties. This protein has three repeats of quasi-RRM domains that bind to RNAs. It is very similar to the family member HNRPF. This gene is thought to be potentially involved in hereditary lymphedema type I phenotype.This gene belongs to the subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). The hnRNPs are RNA binding proteins and they complex with heterogeneous nuclear RNA (hnRNA). These proteins are associated with pre-mRNAs in the nucleus and appear to influence pre-mRNA processing and other aspects of mRNA metabolism and transport. While all of the hnRNPs are present in the nucleus, some seem to shuttle between the nucleus and the cytoplasm. The hnRNP proteins have distinct nucleic acid binding properties. The protein encoded by this gene has three repeats of quasi-RRM domains that bind to RNAs. It is very similar to the family member HNRPF. This gene is thought to be potentially involved in hereditary lymphedema type I phenotype. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...

AmMag™ Quatro System Controllers

Supplier: Genscript

The AmMag Quatro is an automated solution for purification of large-scale, high quality, transfection-grade plasmids from Escherichia coli cultures.

Expand 1 Items
Loading...

E.Z.N.A.® Endo-Free plasmid mini kit II

Supplier: OMEGA BIO-TEK

Plasmid isolated with traditional purification procedures normally contain high levels of endotoxins (also known as lipopolysaccharides or LPS) that can significantly interfere with transfection experiments downstream. The E.Z.N.A.® Endo-Free plasmid mini kit II integrates an efficient endotoxin removal step into the plasmid purification procedure to produce high-quality transfection grade (<0,1 EU/µg) plasmid for efficient transfection. The bacterial cells are lysed using the alkaline-SDS lysis method. The cleared cell lysate is then treated with ETR reagent to efficiently remove the endotoxins. After adjusting the binding condition, the cell lysate is applied into the HiBind® DNA column and purified DNA is eluted from the column membrane.

Expand 1 Items
Loading...
Anti-GSS Rabbit Polyclonal Antibody

Anti-GSS Rabbit Polyclonal Antibody

Supplier: Bioss

GSS (Glutathione synthetase) is a 474 amino acid protein encoded by the gene located at human chromosome 20q11.2. GSS consists of three loops projecting from an antiparallel ∫-sheet, a parallel ∫-sheet and a lid of anti-parallel sheets, which provide access to the ATP-binding site. Although Southern blot and gene analysis suggest that GSS may be the only member of a unique family, the crystal structure indicates that GSS belongs to the ATP-GRASP superfamily. GSS is expressed in hemocytes and nucleated cells, including the brain. GSS occurs as a homodimer. There are two steps in the production of Glutathione, begining with GSS (Glutathione synthetase) is a 474 amino acid protein encoded by the gene located at human chromosome 20q11.2. GSS consists of three loops projecting from an antiparallel ∫-sheet, a parallel ∫-sheet and a lid of anti-parallel sheets, which provide access to the ATP-binding site. Although Southern blot and gene analysis suggest that GSS may be the only member of a unique family, the crystal structure indicates that GSS belongs to the ATP-GRASP superfamily. GSS is expressed in hemocytes and nucleated cells, including the brain. GSS occurs as a homodimer. There are two steps in the production of Glutathione, begining with ©-GCS and ending with GSS. In an ATP-dependent reaction, GSS produces Glutathione from ©-glutamylcysteine and glycine precursors. Partial hepatectomy, diethyl maleate, buthionine sulfoximine, tert-butylhaydroquinone and thioacetamide increase the ex-pression of GSS, which causes an increase in Glutathione levels. An inherited autosomal recessive disorder, 5-oxoprolinuria (pyroglutamic aciduria), is caused by GSS deficiencies, which leads to central nervous system damage, hemolytic anemia, metabolic acidosis and urinary excretion of 5-oxoproline. A missense mutation in the gene encoding GSS leads to a GSS deficiency restricted to erythrocytes, which causes only hemolytic anemia.-GCS and ending with GSS.

Expand 1 Items
Loading...

RNA isolation, total RNA kit II, E.Z.N.A.®

Supplier: OMEGA BIO-TEK

The E.Z.N.A.® Total RNA kit II is designed for isolating total cellular RNA from tissues rich fibrous and fatty tissues such as skeletal muscle, heart, brain and adipose tissues. Compared to other standard silica-column procedures, the E.Z.N.A.® Total RNA kit II provides higher yield and better quality of RNA from all types of tissue. This kit combines phenol/guanidine-base lysis and the silica membrane purification of RNA technology to provide a rapid and easy method of the isolation of total RNA from any tissue sample. RNA purified using the E.Z.N.A.® Total RNA method is ready for applications such as RT-PCR, Northern blotting, poly A+ RNA (mRNA) purification, nuclease protection, and in vitro translation.

Expand 1 Items
Loading...

Anti-EIF2AK2 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (EIF2S1), this phosphorylation impairs the recycling of EIF2S1 between successive rounds of initiation leading to inhibition of translation which eventually results in shutdown of cellular and viral protein synthesis. Also phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11. In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteosomal degradation. Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding proinflammatory cytokines and IFNs. Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6. Can act as both a positive and negative regulator of the insulin signaling pathway (ISP). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2).

Expand 1 Items
Loading...

Anti-EIF2AK2 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (EIF2S1), this phosphorylation impairs the recycling of EIF2S1 between successive rounds of initiation leading to inhibition of translation which eventually results in shutdown of cellular and viral protein synthesis. Also phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11. In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteosomal degradation. Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding proinflammatory cytokines and IFNs. Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6. Can act as both a positive and negative regulator of the insulin signaling pathway (ISP). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2).

Expand 1 Items
Loading...
Anti-RPS3 Rabbit Polyclonal Antibody

Anti-RPS3 Rabbit Polyclonal Antibody

Supplier: Bioss

Involved in translation as a component of the 40S small ribosomal subunit (PubMed:8706699). Has endonuclease activity and plays a role in repair of damaged DNA (PubMed:7775413). Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA (PubMed:15707971). Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS) (PubMed:14706345). Has also been shown to bind with similar affinity to intact and damaged DNA (PubMed:18610840). Stimulates the N-glycosylase activity of the base excision protein OGG1 (PubMed:15518571). Enhances the uracil excision activity of UNG1 (PubMed:18973764). Also stimulates the cleavage of the phosphodiester backbone by APEX1 (PubMed:18973764). When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage (PubMed:23911537). Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide (PubMed:17049931). Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes (PubMed:18045535). Represses its own translation by binding to its cognate mRNA (PubMed:20217897). Binds to and protects TP53/p53 from MDM2-mediated ubiquitination (PubMed:19656744). Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization (PubMed:23131551). Involved in induction of apoptosis through its role in activation of CASP8 (PubMed:14988002). Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5 (PubMed:20605787). Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation (PubMed:22510408).

Expand 1 Items
Loading...

Anti-ADAR Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence.

Expand 1 Items
Loading...

Anti-TGFBR3 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

Membrane Receptors Transforming growth factor beta is a multifunctional cytokine known to modulate several tissue development and repair processes, including cell differentiation, cell cycle progression, cellular migration, adhesion, and extracellular matrix production. There are 3 forms encoded by separate genes TGFB1, TGFB2, and TGFB3. The diverse effects of TGF beta are mediated by the TGF beta receptors and cell surface binding proteins. In addition to type I TGF beta receptor (TGFBR1) and type II (TFGBR2), type III (TGF beta III receptor) has been identified. It is a glycoprotein that binds TGF beta and exists in both a membrane bound and a soluble form. It may serve as a receptor accessory molecule in both the TGF beta and fibroblast growth factor systems. TGF beta III receptor lacks a recognizable signaling domain and has no clearly defined role in TGF beta signaling. Endothelial cells undergoing epithelial mesenchymal transformation express TGF beta III receptor, and TGF beta III receptor specific antisera inhibits mesenchyme formation and migration. Misexpression of TGF beta III receptor in nontransforming ventricular endothelial cells conferrs transformation in response to TGFB2. These results support a model where TGF beta III receptor localizes transformation in the heart and plays an essential, nonredundant role in TGF beta signaling. TGF beta III receptor, or beta glycan, can function as an inhibin coreceptor with ActRII. TGF beta III receptor binds inhibin with high affinity and enhances binding in cells coexpressing ActRII and TGF beta III receptor. Inhibin forms crosslinked complexes with both recombinant and endogenously expressed TGF beta III receptor and ActRII. TGF beta III receptor confers inhibin sensitivity to cell lines that otherwise respond poorly to this hormone.

Expand 1 Items
Loading...

Anti-STK11 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP53. Acts as a key upstream regulator of AMPK by mediating phosphorylation and activation of AMPK catalytic subunits PRKAA1 and PRKAA2 and thereby regulates processes including: inhibition of signaling pathways that promote cell growth and proliferation when energy levels are low, glucose homeostasis in liver, activation of autophagy when cells undergo nutrient deprivation, and B-cell differentiation in the germinal center in response to DNA damage. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton. Required for cortical neuron polarization by mediating phosphorylation and activation of BRSK1 and BRSK2, leading to axon initiation and specification. Involved in DNA damage response: interacts with p53/TP53 and recruited to the CDKN1A/WAF1 promoter to participate in transcription activation. Able to phosphorylate p53/TP53; the relevance of such result in vivo is however unclear and phosphorylation may be indirect and mediated by downstream STK11/LKB1 kinase NUAK1. Also acts as a mediator of p53/TP53-dependent apoptosis via interaction with p53/TP53: translocates to the mitochondrion during apoptosis and regulates p53/TP53-dependent apoptosis pathways. In vein endothelial cells, inhibits PI3K/Akt signaling activity and thus induces apoptosis in response to the oxidant peroxynitrite (in vitro). Regulates UV radiation-induced DNA damage response mediated by CDKN1A.

Expand 1 Items
Loading...

Anti-RPS3 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

Involved in translation as a component of the 40S small ribosomal subunit (PubMed:8706699). Has endonuclease activity and plays a role in repair of damaged DNA (PubMed:7775413). Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA (PubMed:15707971). Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS) (PubMed:14706345). Has also been shown to bind with similar affinity to intact and damaged DNA (PubMed:18610840). Stimulates the N-glycosylase activity of the base excision protein OGG1 (PubMed:15518571). Enhances the uracil excision activity of UNG1 (PubMed:18973764). Also stimulates the cleavage of the phosphodiester backbone by APEX1 (PubMed:18973764). When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage (PubMed:23911537). Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide (PubMed:17049931). Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes (PubMed:18045535). Represses its own translation by binding to its cognate mRNA (PubMed:20217897). Binds to and protects TP53/p53 from MDM2-mediated ubiquitination (PubMed:19656744). Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization (PubMed:23131551). Involved in induction of apoptosis through its role in activation of CASP8 (PubMed:14988002). Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5 (PubMed:20605787). Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation (PubMed:22510408).

Expand 1 Items
Loading...

Anti-HLA-DPB1 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

Binds peptides derived from antigens that access the endocytic route of antigen presenting cells (APC) and presents them on the cell surface for recognition by the CD4 T-cells. The peptide binding cleft accommodates peptides of 10-30 residues. The peptides presented by MHC class II molecules are generated mostly by degradation of proteins that access the endocytic route, where they are processed by lysosomal proteases and other hydrolases. Exogenous antigens that have been endocytosed by the APC are thus readily available for presentation via MHC II molecules, and for this reason this antigen presentation pathway is usually referred to as exogenous. As membrane proteins on their way to degradation in lysosomes as part of their normal turn-over are also contained in the endosomal/lysosomal compartments, exogenous antigens must compete with those derived from endogenous components. Autophagy is also a source of endogenous peptides, autophagosomes constitutively fuse with MHC class II loading compartments. In addition to APCs, other cells of the gastrointestinal tract, such as epithelial cells, express MHC class II molecules and CD74 and act as APCs, which is an unusual trait of the GI tract. To produce a MHC class II molecule that presents an antigen, three MHC class II molecules (heterodimers of an alpha and a beta chain) associate with a CD74 trimer in the ER to form a heterononamer. Soon after the entry of this complex into the endosomal/lysosomal system where antigen processing occurs, CD74 undergoes a sequential degradation by various proteases, including CTSS and CTSL, leaving a small fragment termed CLIP (class-II-associated invariant chain peptide). The removal of CLIP is facilitated by HLA-DM via direct binding to the alpha-beta-CLIP complex so that CLIP is released. HLA-DM stabilizes MHC class II molecules until primary high affinity antigenic peptides are bound. The MHC II molecule bound to a peptide is then transported to the cell membrane surface.

Expand 1 Items
Loading...

Anti-B4GALT7 Rabbit Polyclonal Antibody (Alexa Fluor® 647)

Supplier: Bioss

β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.

Expand 1 Items
Loading...

Anti-B4GALT7 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.

Expand 1 Items
Loading...

Anti-EIF2AK2 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (EIF2S1), this phosphorylation impairs the recycling of EIF2S1 between successive rounds of initiation leading to inhibition of translation which eventually results in shutdown of cellular and viral protein synthesis. Also phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11. In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteosomal degradation. Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding proinflammatory cytokines and IFNs. Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6. Can act as both a positive and negative regulator of the insulin signaling pathway (ISP). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2).

Expand 1 Items
Loading...

Anti-EIF2AK2 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (EIF2S1), this phosphorylation impairs the recycling of EIF2S1 between successive rounds of initiation leading to inhibition of translation which eventually results in shutdown of cellular and viral protein synthesis. Also phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11. In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteosomal degradation. Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding proinflammatory cytokines and IFNs. Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6. Can act as both a positive and negative regulator of the insulin signaling pathway (ISP). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2).

Expand 1 Items
Loading...

Anti-B4GALT7 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.

Expand 1 Items
Loading...
Recommended for You