15895 Results for: "Sodium+metatungstate+monohydrate"
Anti-CHEK2 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
In response to DNA damage and replication blocks, cell cycle progression is halted through the control of critical cell cycle regulators. The protein encoded by Chk2 gene is a cell cycle checkpoint regulator and putative tumor suppressor. It contains a forkhead-associated protein interaction domain essential for activation in response to DNA damage and is rapidly phosphorylated in response to replication blocks and DNA damage. When activated, the encoded protein is known to inhibit CDC25C phosphatase, preventing entry into mitosis, and has been shown to stabilize the tumor suppressor protein p53, leading to cell cycle arrest in G1. In addition, this protein interacts with and phosphorylates BRCA1, allowing BRCA1 to restore survival after DNA damage. Mutations in this gene have been linked with Li-Fraumeni syndrome, a highly penetrant familial cancer phenotype usually associated with inherited mutations in TP53. Also, mutations in this gene are thought to confer a predisposition to sarcomas, breast cancer, and brain tumors. This nuclear protein is a member of the CDS1 subfamily of serine/threonine protein kinases. Three transcript variants encoding different isoforms have been found for this gene.
Expand 1 Items
Anti-CD209 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Pathogen-recognition receptor expressed on the surface of immature dendritic cells (DCs) and involved in initiation of primary immune response. Thought to mediate the endocytosis of pathogens which are subsequently degraded in lysosomal compartments. The receptor returns to the cell membrane surface and the pathogen-derived antigens are presented to resting T-cells via MHC class II proteins to initiate the adaptive immune response. Probably recognizes in a calcium-dependent manner high mannose N-linked oligosaccharides in a variety of pathogen antigens, including HIV-1 gp120, HIV-2 gp120, SIV gp120, ebolavirus glycoproteins, cytomegalovirus gB, HCV E2, dengue virus gE, Leishmania pifanoi LPG, Lewis-x antigen in Helicobacter pylori LPS, mannose in Klebsiella pneumonae LPS, di-mannose and tri-mannose in Mycobacterium tuberculosis ManLAM and Lewis-x antigen in Schistosoma mansoni SEA. On DCs it is a high affinity receptor for ICAM2 and ICAM3 by binding to mannose-like carbohydrates. May act as a DC rolling receptor that mediates transendothelial migration of DC presursors from blood to tissues by binding endothelial ICAM2. Seems to regulate DC-induced T-cell proliferation by binding to ICAM3 on T-cells in the immunological synapse formed between DC and T-cells.
Expand 1 Items
Anti-MAPK8 / MAPK9 / MAPK10 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Responds to activation by environmental stress and pro-inflammatory cytokines by phosphorylating a number of transcription factors, primarily components of AP-1 such as JUN, JDP2 and ATF2 and thus regulates AP-1 transcriptional activity. In T-cells, JNK1 and JNK2 are required for polarized differentiation of T-helper cells into Th1 cells By similarity. Phosphorylates heat shock factor protein 4 (HSF4). /Responds to activation by environmental stress and pro-inflammatory cytokines by phosphorylating a number of transcription factors, primarily components of AP-1 such as c-Jun and ATF2 and thus regulates AP-1 transcriptional activity. In T-cells, JNK1 and JNK2 are required for polarized differentiation of T-helper cells into Th1 cells. JNK2 isoforms display different binding patterns: alpha-1 and alpha-2 preferentially bind to c-Jun, whereas beta-1 and beta-2 bind to ATF2. However, there is no correlation between binding and phosphorylation, which is achieved at about the same efficiency by all isoforms. JUNB is not a substrate for JNK2 alpha-2, and JUND binds only weakly to it./Responds to activation by environmental stress and pro-inflammatory cytokines by phosphorylating a number of transcription factors, primarily components of AP-1 such as c-Jun and ATF2 and thus regulates AP-1 transcriptional activity. Required for stress-induced neuronal apoptosis and the pathogenesis of glutamate excitotoxicity
Expand 1 Items
Anti-MAP2K6 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
MEK6 is a member of MAPKK protein kinase family. By using degenerate oligonucleotide primers from the conserved kinase domains of MKK3 and MKK4 two human cDNAs and 1 murine cDNA encoding closely related proteins of the MKK family were cloned. The two human clones appear to be different isoforms of the same gene generated by differential splicing: the shorter clone was designated MKK6, encodes a 278-amino acid protein, while the longer clone, designated MKK6b, encodes a 334-amino acid protein. MKK6 is about 80% identical to MKK3 and 40% identical to MKK4. 1.7-kb human MKK6 transcript is highly expressed in skeletal muscle, while an MKK6b-specific probe detected mRNA bands of 1.8, 2.4, and 4.5 kb that are enriched in heart, skeletal muscle, pancreas and liver. MKK6 plays an important role in intracellular signaling pathways leading toward activation of the p38 MAP kinase. MEK6 phosphorylates and activates p38 in response to inflammatory cytokines or environmental stress. As an essential component of p38 MAPK mediated signal transduction pathway, this gene is involved in many cellular processes such as stress induced cell cycle arrest, transcription activation and apoptosis.
Expand 1 Items
Anti-RAF1 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
A-Raf, B-Raf and c-Raf (Raf-1) are the main effectors recruited by GTP-bound Ras to activate the MEK-MAP kinase pathway. Activation of c-Raf is the best understood and involves phosphorylation at multiple activating sites including Ser338, Tyr341, Thr491, Ser494, Ser497 and Ser499. p21-activated protein kinase (PAK) has been shown to phosphorylate c-Raf at Ser338 and the Src family phosphorylates Tyr341 to induce c-Raf activity (3, 4). Ser338 of c-Raf corresponds to similar sites in A-Raf (Ser299) and B-Raf (Ser445), although this site is constitutively phosphorylated in B-Raf. Inhibitory 14-3-3 binding sites on c-Raf (Ser259 and Ser621) can be phosphorylated by Akt and AMPK, respectively (6, 7). While A-Raf, B-Raf and c-Raf are similar in sequence and function, differential regulation has been observed (8). Of particular interest, B-Raf contains three consensus Akt phosphorylation sites (Ser364, Ser428 and Thr439) and lacks a site equivalent to Tyr341 of c-Raf (8, 9). The B-Raf mutation V600E results in elevated kinase activity and is commonly found in malignant melanoma (10). Six residues of c-Raf (Ser29, Ser43, Ser289, Ser296, Ser301 and Ser642) become hyperphosphorylated in a manner consistent with c-Raf inactivation. The hyperphosphorylation of these six sites is dependent on downstream MEK signaling and renders c-Raf unresponsive to
Expand 1 Items
Anti-IL25 Mouse Monoclonal Antibody
Supplier: ProSci Inc.
Recently, a number of cytokines belonging to the interleukin (IL)-17 family have been identified. These are termed as IL-17B, IL-17C and IL-17E. IL-17 is a potent proinflammatory cytokine that plays roles in a number of diseases including rheumatoid arthritis , multiple sclerosis , and promotion of tumor growth. IL-17B, C, and E like IL-17 are able to induce proinflammatory responses. However, they do not bind to the IL-17 receptor suggesting that additional IL-17R related receptor might exist. Receptor for IL-17B and IL-17E has been independently isolated by Shi, et al and Lee, et al. and has been designated as EV127 (in mouse) and IL-17Rh1 (in human), respectively. IL-17E induces activation of NF-κB pathway and like IL-17 also induces production of IL-8. The IL17 proteins are a family of potent cytokines that act to induce proinflammatory responses. Studies have shown that IL17E binds strongly to IL17RB. Receptor binding of ligand has been shown to lead to the activation of nuclear factor kappa-B and production of IL8. Exposure of mice to IL17 resulted in a Th-2 like response characterized by increased serum IgE, IgG1 and IgA levels, blood eosinophilia, increased lymphocytes and neutrophils, and pathological changes in the tissues that included eosinophilic infiltrates, increased mucus production, B-lymphocyte hyperplasia and epithelial cell hyperplasia/hypertrophy.
Expand 1 Items
Anti-LEFTY2 Mouse Monoclonal Antibody
Supplier: ProSci Inc.
During vertebrate embryogenesis, a left-right axis is established. Secreted growth factors of the TGF-beta family, including gene products derived from nodal, lefty-1 and lefty-2, play crucial roles in establishing left-right asymmetries. TGF-beta (Transforming growth factor-beta) is a pleiotropic cytokine that regulates growth and differentiation of diverse types of cells. TGF-beta actions are directed by ligand-induced activation of TGF-beta receptors. Complexes formed move into the nucleus, where they act as components of a transcriptional complex. Lefty, a novel member of the TGF-beta superfamily, inhibits TGF-beta signaling. Lefty acts to inhibit phosphorylation of Smad2 following activation of the TGF-beta receptor. Lefty also inhibits events downstream from R-Smad phosphorylation. Lefty provides a repressed state of TGF-beta-responsive genes. The Lefty family is comprised of Lefty 1 and Lefty 2 in mouse, and Lefty A and Lefty B in humans. Members of the TGF-beta superfamily require processing for their activation. Cleavage is therefore an essential step for Lefty activation. Lefty is synthesized as a large inactive precursor (42 kDa) that must be endoproteolytically processed to release the bioactive polypeptide (28 kDa and 34 kDa forms). The 28 kDa form induces MAPK activity.
Expand 1 Items
Anti-CHEK1 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Required for checkpoint mediated cell cycle arrest in response to DNA damage or the presence of unreplicated DNA. May also negatively regulate cell cycle progression during unperturbed cell cycles. Recognizes the substrate consensus sequence [R-X-X-S/T]. Binds to and phosphorylates CDC25A, CDC25B and CDC25C. Phosphorylation of CDC25A at 'Ser-178' and 'Thr-507' and phosphorylation of CDC25C at 'Ser-216' creates binding sites for 14-3-3 proteins which inhibit CDC25A and CDC25C. Phosphorylation of CDC25A at 'Ser-76', 'Ser-124', 'Ser-178', 'Ser-279' and 'Ser-293' promotes proteolysis of CDC25A. Inhibition of CDC25 activity leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. Binds to and phosphorylates RAD51 at 'Thr-309', which may enhance the association of RAD51 with chromatin and promote DNA repair by homologous recombination. Binds to and phosphorylates TLK1 at 'Ser-743', which prevents the TLK1-dependent phosphorylation of the chromatin assembly factor ASF1A. This may affect chromatin assembly during S phase or DNA repair. May also phosphorylate multiple sites within the C-terminus of TP53, which promotes activation of TP53 by acetylation and enhances suppression of cellular proliferation.
Expand 1 Items
Anti-CALR Mouse Monoclonal Antibody
Supplier: ProSci Inc.
Calreticulin is a multifunctional protein that acts as a major Ca(2+)-binding (storage) protein in the lumen of the endoplasmic reticulum. It is also found in the nucleus, suggesting that it may have a role in transcription regulation. Calreticulin binds to the synthetic peptide KLGFFKR, which is almost identical to an amino acid sequence in the DNA-binding domain of the superfamily of nuclear receptors. Calreticulin binds to antibodies in certain sera of systemic lupus and Sjogren patients which contain anti-Ro/SSA antibodies, it is highly conserved among species, and it is located in the endoplasmic and sarcoplasmic reticulum where it may bind calcium. The amino terminus of calreticulin interacts with the DNA-binding domain of the glucocorticoid receptor and prevents the receptor from binding to its specific glucocorticoid response element. Calreticulin can inhibit the binding of androgen receptor to its hormone-responsive DNA element and can inhibit androgen receptor and retinoic acid receptor transcriptional activities in vivo, as well as retinoic acid-induced neuronal differentiation. Thus, calreticulin can act as an important modulator of the regulation of gene transcription by nuclear hormone receptors. Systemic lupus erythematosus is associated with increased autoantibody titers against calreticulin but calreticulin is not a Ro/SS-A antigen. Earlier papers referred to calreticulin as an Ro/SS-A antigen but this was later disproven. Increased autoantibody titer against human calreticulin is found in infants with complete congenital heart block of both the IgG and IgM classes.
Expand 1 Items
SMCC (N-Succinimidyl 4-(N-Maleimidomethyl)cyclohexanecarboxylate), No-Weigh™ Format, Pierce™
Supplier: Thermo Fisher Scientific
Thermo Scientific Pierce SMCC is a hetero-bifunctional crosslinker that contain N-hydroxysuccinimide (NHS) ester and maleimide groups that allow covalent conjugation of amine- and sulfhydryl-containing molecules. NHS esters react with primary amines at pH 7–9 to form amide bonds, while maleimides react with sulfhydryl groups at pH 6.5–7.5 to form stable thioether bonds. In aqueous solutions, NHS ester hydrolytic degradation is a competing reaction whose rate increases with pH. The maleimide group is more stable than the NHS-ester group, but will slowly hydrolyze and lose its reaction specificity for sulfhydryls at pH values > 7.5. For these reasons, conjugations with these crosslinkers are usually performed at pH 7.2–7.5, with the NHS ester (amine-targeted) reacted before or simultaneous with the maleimide (sulfhydryl-targeted) reaction.
Expand 1 Items
Anti-GABRA3 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
GABA (gamma-aminobutyric acid) is the primary inhibitory neurotransmitter in the central nervous system and interacts with three different receptors: GABA(A), GABA(B) and GABA(C) receptor. The ionotropic GABA(A) and GABA(C) receptors are ligand-gated ion channels that produce fast inhibitory synaptic transmission. In contrast, the metabotropic GABA(B) receptor is coupled to G proteins that modulate slow inhibitory synaptic transmission. Functional GABA(B) receptors form heterodimers of GABA(B)R1 and GABA(B)R2 where GABA(B)R1 binds the ligand and GABA(B)R2 is the primary G protein contact site. Two isoforms of GABA(B)R1 have been cloned: GABA(B)R1a is a 130 kD protein and GABA(B)R1b is a 95 kD protein. G proteins subsequently inhibit adenyl cylase activity and modulate inositol phospholipid hydrolysis. GABA(B) receptors have both pre- and postsynaptic inhibitions: presynaptic GABA(B) receptors inhibit neurotransmitter release through suppression of high threshold calcium channels, while postsynaptic GABA(B) receptors inhibit through coupled activation of inwardly rectifying potassium channels. In addition to synaptic inhibition, GABA(B) receptors may also be involved in hippocampal long-term potentiation, slow wave sleep and muscle relaxation.
Expand 1 Items
Anti-LCK Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Tyrosine kinase that plays an essential role for the selection and maturation of developing T-cell in the thymus and in mature T-cell function. Is constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors and plays a key role in T-cell antigen receptor(TCR)-linked signal transduction pathways. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, and thereby recruits the associated LCK to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosines residues within the immunoreceptor tyrosines-based activation motifs (ITAMs) in the cytoplasmic tails of the TCRgamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. In addition, contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, and upon engagement of the CD2 molecule, LCK undergoes hyperphosphorylation and activation. Also plays a role in the IL2 receptor-linked signaling pathway that controls T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR.
Expand 1 Items
Anti-LCK Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Tyrosine kinase that plays an essential role for the selection and maturation of developing T-cell in the thymus and in mature T-cell function. Is constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors and plays a key role in T-cell antigen receptor(TCR)-linked signal transduction pathways. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, and thereby recruits the associated LCK to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosines residues within the immunoreceptor tyrosines-based activation motifs (ITAMs) in the cytoplasmic tails of the TCRgamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. In addition, contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, and upon engagement of the CD2 molecule, LCK undergoes hyperphosphorylation and activation. Also plays a role in the IL2 receptor-linked signaling pathway that controls T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR.
Expand 1 Items
Anti-RELB Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric RelB-p50 and RelB-p52 complexes are transcriptional activators. RELB neither associates with DNA nor with RELA/p65 or REL. Stimulates promoter activity in the presence of NFKB2/p49.
Expand 1 Items
Anti-JAG1 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Jagged-1 (JAG1) is a cell surface protein which is one of several ligands that activate Notch and related receptors. JAG1 functions in an embryologically important signaling pathway and has also been shown to play a role in hematopoiesis. JAG1 inhibits proliferation of cd34+ macrophage progenitor cells and a JAG1 gene abnormality may be an aggravating factor in extrahepatic biliary atresia. Activation of NOTCH1 signaling by JAG1 induces monocyte-derived dendritic cell maturation in vitro. JAG1 interaction with NOTCH1 on tumor cells dramatically induces proliferation and inhibition of apoptosis in vitro. Either haploinsufficiency for wild-type JAG1 and/or dominant negative effects produced by mutated JAG1 are responsible for the Alagille syndrome. A BLAST analysis was used to suggest crossreactivity with Jagged-1 protein from human, chimpanzee, rat and mouse based on 100% homology with the immunizing sequence. Partial reactivity is expected against canine (81%) and Xenopus laevis (85%) based on partial sequence homologies as indicated. The jagged 1 protein encoded by JAG1 is the human homolog of the Drosophilia jagged protein. Human jagged 1 is the ligand for the receptor notch 1, the latter a human homolog of the Drosophilia jagged receptor notch. Mutations that alter the jagged 1 protein cause Alagille syndrome. Jagged 1 signalling through notch 1 has also been shown to play a role in hematopoiesis.
Expand 1 Items
SMCC (N-Succinimidyl 4-(N-Maleimidomethyl)cyclohexanecarboxylate), Pierce™
Supplier: Thermo Fisher Scientific
Thermo Scientific Pierce SMCC is a hetero-bifunctional crosslinker that contain N-hydroxysuccinimide (NHS) ester and maleimide groups that allow covalent conjugation of amine- and sulfhydryl-containing molecules. NHS esters react with primary amines at pH 7–9 to form amide bonds, while maleimides react with sulfhydryl groups at pH 6.5–7.5 to form stable thioether bonds. In aqueous solutions, NHS ester hydrolytic degradation is a competing reaction whose rate increases with pH. The maleimide group is more stable than the NHS-ester group, but will slowly hydrolyze and lose its reaction specificity for sulfhydryls at pH values > 7.5. For these reasons, conjugations with these crosslinkers are usually performed at pH 7.2–7.5, with the NHS ester (amine-targeted) reacted before or simultaneous with the maleimide (sulfhydryl-targeted) reaction.
Expand 1 Items
Anti-IRAK4 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
IL-1 receptor-associated kinases (IRAKs) are important mediators in the signal transduction of Toll/IL-1 receptor (TIR) family members. The cytoplasmic domains of TIR proteins interact with the adapter protein, MyD88. MyD88 then recruits IRAKs (IRAK-1, -2, and M), which in turn interact with other adapter molecules, such as TRAF6 to activate NF-κB and MAPK pathways. Recently, a new member of this family, IRAK-4 has been identified. IRAK-4 may act as an upstream activator of IRAK-1. IRAK-4 is important for LPS activation of TLRS. Mice lacking IRAK-4 are resistant to lethal doses of LPS and are also severely impaired in their responses to viral and bacterial challenges (4, 5). IRAK4, an IRAK type protein kinase, is a signal transducer for the immune response Toll-like receptor and interleukin-1 (IL-1) receptor signaling cascades. IRAK4 has auto- and cross-phosphorylation kinase activity and has been shown to phosphorylate and activate IRAK1. Additionally, IRAK4 interacts with IRAK1 and TRAF6 in an IL-1-dependent manner, and overexpression of IRAK4 can activate NF-kappaB as well as mitogen-activated protein (MAP) kinase pathways. IRAK4 (-/-) mice are resistant to a lethal dose of lipopolysaccharide and are severely impaired in their responses to viral and bacterial challenges. At least two mRNA transcripts have been reported: 3.0- and 4.4-kb. IRAK4, also referrred to as NY-REN-64, was first identified as an anitgen in a screen of renal tumors.
Expand 1 Items
Boronic acid resin
Supplier: Thermo Fisher Scientific
Pierce™ Boronic acid resin enables ribonucleotide and oligonucleotide RNA isolation.
Expand 1 Items
UDK Kjeldahl distillation units
Supplier: VELP SCIENTIFIC
The UDK Series distillers are designed to meet the most challenging demands and requirements for diverse applications, according to international standards: Kjeldahl nitrogen TKN, proteins, ammoniacal nitrogen, nitric nitrogen (Devarda), phenols, TVBN and volatile acids, cyanides, and alcohol content. Five different UDK models are available with different automation levels to match any laboratory requirement of automation and throughput. A complete range of distillers featuring exclusive technologies to meet any laboratory requirement for the determination of analytes in different fields of application.
Expand 6 Items
pH/mV/ISE meter, handheld, Orion Star™ A324
Supplier: Thermo Orion
This rugged, waterproof portable meter is designed for a wide range of pH, ion concentration, mV, ORP and temperature testing and field applications. It can be used in the most demanding locations thanks to its IP 67-rated housing. The meter offers one measuring channel.
Expand 2 Items
Anti-CARM1 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Methylates (mono- and asymmetric dimethylation) the guanidino nitrogens of arginyl residues in several proteins involved in DNA packaging, transcription regulation, and mRNA stability. Recruited to promoters upon gene activation together with histone acetyltransferases from EP300/P300 and p160 families, methylates histone H3 at 'Arg-17' and activates transcription via chromatin remodeling. During nuclear hormone receptor activation and TCF7L2/TCF4 activation, acts synergically with EP300/P300 and either one of the p160 histone acetyltransferases NCOA1/SRC1, NCOA2/GRIP1 and NCOA3/ACTR or CTNNB1/beta-catenin to activate transcription. During myogenic transcriptional activation, acts together with NCOA3/ACTR as a coactivator for MEF2C. During monocyte inflammatory stimulation, acts together with EP300/P300 as a coactivator for NF-κ-B. Also seems to be involved in p53/TP53 transcriptional activation. Methylates EP300/P300, both at 'Arg-2142', which may loosen its interaction with NCOA2/GRIP1, and at 'Arg-580' and 'Arg-604' in the KIX domain, which impairs its interaction with CREB and inhibits CREB-dependent transcriptional activation. Also methylates arginine residues in RNA-binding proteins PABPC1, ELAVL1 and ELAV4, which may affect their mRNA-stabilizing properties and the half-life of their target mRNAs.
Expand 1 Items
Anti-PPP1R13L Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
ASPP proteins (ASPP1, ASPP2 and iASPP) represent a new family of p53 binding proteins. ASPP1 and ASPP2 bind and enhance p53-mediated apoptosis. In contrast, the third member, iASPP, functionally inactivates p53. iASPP (also called protein phosphatase 1 regulatory (inhibitor) subunit 13 like protein, Inhibitor of ASPP protein, Protein iASPP, PPP1R13B-like protein and NFkB-interacting protein 1) plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. iASPP blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. This protein also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis. iASPP is predominantly a cytoplasmic protein (isoform 1) but can also be found in the nucleus (isoform 2). iASPP is highly expressed in heart, placenta and prostate and is weakly expressed in brain, liver, skeletal muscle, testis and peripheral blood leukocyte. The N-terminal region of isoform 1 is required for cytoplasmic localization. Defects in iASPP may be a cause of certain breast cancers and the protein is overexpressed in many patients suffering from breast carcinomas and expressing a wild-type p53/TP53 protein.
Expand 1 Items
Anti-TLR8 Mouse Monoclonal Antibody
Supplier: ProSci Inc.
Ten human homologs of TLRs (TLR1-10) have been described. TLR8 gene contains three exons, two of which have coding function. TLR8 cDNA codes for a protein of approximate molecular weight of 120 kDa (4,5). Toll-like receptors (TLRs) are signaling molecules that recognize different microbial products during infection and serve as an important link between the innate and adaptive immune responses. These proteins act through adaptor molecules such as MyD88 and TIRAP to activate various kinases and transcription factors. Like TLR7, TLR8 is localized to endosomal or lysosomal compartments and stimulates the innate immune response after activation by guanosine- and uridine-rich single-stranded RNA. Human but not murine TLR8 confers responsiveness to the antiviral compound R-848. The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This gene is predominantly expressed in lung and peripheral blood leukocytes, and lies in close proximity to another family member, TLR7, on chromosome X.
Expand 1 Items
Anti-RELB Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric RelB-p50 and RelB-p52 complexes are transcriptional activators. RELB neither associates with DNA nor with RELA/p65 or REL. Stimulates promoter activity in the presence of NFKB2/p49.
Expand 1 Items
Anti-PPARG Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Since their discovery in the early 1990's, the peroxisome proliferator activated receptors (PPARs) have attracted significant attention. This is primarily because PPARs serve as receptors for two very important classes of drugs: the hypolipidemic fibrates and the insulin sensitizing thiazolidinediones. Peroxisome proliferators are non-genotoxic carcinogens that are purported to exert their effect on cells through their interaction with members of the nuclear hormone receptor family termed PPARs. Nuclear hormone receptors are ligand-dependent intracellular proteins that stimulate transcription of specific genes by binding to specific DNA sequences following activation by the appropriate ligand. Upon binding fatty acids or hypolipidemic drugs, PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate the expression of target genes. There are 3 known subtypes of PPARs: PPAR-alpha, PPAR-delta and PPAR-gamma. Mostly target genes are involved in the catabolism of fatty acids. Conversely, PPAR-gamma is activated by peroxisome proliferators such as prostaglandins, leukotrienes and anti-diabetic thiazolidinediones and affects the expression of genes involved in the storage of the fatty acids. PPAR-gamma may also be involved in adipocyte differentiation. It has also been shown that PPARs can induce transcription of acyl coenzyme A oxidase and cytochrome P450 through interaction with specific response elements.
Expand 1 Items
Genomic DNA purification kit, Fermentas
Supplier: Thermo Fisher Scientific
DNA purification kit is a simple and rapid system for high quality genomic DNA purification from various sources including: whole blood, serum, cell lines, bacterial cells, plant, and mammalian tissues.
Expand 1 Items
Fluvastatin 1 * 25 mg
Supplier: Merck Millipore (Calbiochem)
Fluvastatin 1 * 25 mg
Expand 1 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex
Expand 1 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex