Order Entry
Northern Ireland
ContactUsLinkComponent
15007 results for "Sodium+alginate"

15007 Results for: "Sodium+alginate"

pH/mV/ISE meter, handheld, Orion Star™ A324

pH/mV/ISE meter, handheld, Orion Star™ A324

Supplier: Thermo Orion

This rugged, waterproof portable meter is designed for a wide range of pH, ion concentration, mV, ORP and temperature testing and field applications. It can be used in the most demanding locations thanks to its IP 67-rated housing. The meter offers one measuring channel.

Expand 2 Items
Loading...
UDK Kjeldahl distillation units

UDK Kjeldahl distillation units

Supplier: VELP SCIENTIFIC

The UDK Series distillers are designed to meet the most challenging demands and requirements for diverse applications, according to international standards: Kjeldahl nitrogen TKN, proteins, ammoniacal nitrogen, nitric nitrogen (Devarda), phenols, TVBN and volatile acids, cyanides, and alcohol content. Five different UDK models are available with different automation levels to match any laboratory requirement of automation and throughput. A complete range of distillers featuring exclusive technologies to meet any laboratory requirement for the determination of analytes in different fields of application.

Expand 6 Items
Loading...
Anti-PPARG Rabbit Polyclonal Antibody

Anti-PPARG Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Since their discovery in the early 1990's, the peroxisome proliferator activated receptors (PPARs) have attracted significant attention. This is primarily because PPARs serve as receptors for two very important classes of drugs: the hypolipidemic fibrates and the insulin sensitizing thiazolidinediones. Peroxisome proliferators are non-genotoxic carcinogens that are purported to exert their effect on cells through their interaction with members of the nuclear hormone receptor family termed PPARs. Nuclear hormone receptors are ligand-dependent intracellular proteins that stimulate transcription of specific genes by binding to specific DNA sequences following activation by the appropriate ligand. Upon binding fatty acids or hypolipidemic drugs, PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate the expression of target genes. There are 3 known subtypes of PPARs: PPAR-alpha, PPAR-delta and PPAR-gamma. Mostly target genes are involved in the catabolism of fatty acids. Conversely, PPAR-gamma is activated by peroxisome proliferators such as prostaglandins, leukotrienes and anti-diabetic thiazolidinediones and affects the expression of genes involved in the storage of the fatty acids. PPAR-gamma may also be involved in adipocyte differentiation. It has also been shown that PPARs can induce transcription of acyl coenzyme A oxidase and cytochrome P450 through interaction with specific response elements.

Expand 1 Items
Loading...
Anti-TLR8 Mouse Monoclonal Antibody

Anti-TLR8 Mouse Monoclonal Antibody

Supplier: ProSci Inc.

Ten human homologs of TLRs (TLR1-10) have been described. TLR8 gene contains three exons, two of which have coding function. TLR8 cDNA codes for a protein of approximate molecular weight of 120 kDa (4,5). Toll-like receptors (TLRs) are signaling molecules that recognize different microbial products during infection and serve as an important link between the innate and adaptive immune responses. These proteins act through adaptor molecules such as MyD88 and TIRAP to activate various kinases and transcription factors. Like TLR7, TLR8 is localized to endosomal or lysosomal compartments and stimulates the innate immune response after activation by guanosine- and uridine-rich single-stranded RNA. Human but not murine TLR8 confers responsiveness to the antiviral compound R-848. The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This gene is predominantly expressed in lung and peripheral blood leukocytes, and lies in close proximity to another family member, TLR7, on chromosome X.

Expand 1 Items
Loading...
Anti-PPP1R13L Rabbit Polyclonal Antibody

Anti-PPP1R13L Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

ASPP proteins (ASPP1, ASPP2 and iASPP) represent a new family of p53 binding proteins. ASPP1 and ASPP2 bind and enhance p53-mediated apoptosis. In contrast, the third member, iASPP, functionally inactivates p53. iASPP (also called protein phosphatase 1 regulatory (inhibitor) subunit 13 like protein, Inhibitor of ASPP protein, Protein iASPP, PPP1R13B-like protein and NFkB-interacting protein 1) plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. iASPP blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. This protein also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis. iASPP is predominantly a cytoplasmic protein (isoform 1) but can also be found in the nucleus (isoform 2). iASPP is highly expressed in heart, placenta and prostate and is weakly expressed in brain, liver, skeletal muscle, testis and peripheral blood leukocyte. The N-terminal region of isoform 1 is required for cytoplasmic localization. Defects in iASPP may be a cause of certain breast cancers and the protein is overexpressed in many patients suffering from breast carcinomas and expressing a wild-type p53/TP53 protein.

Expand 1 Items
Loading...
Anti-CARM1 Rabbit Polyclonal Antibody

Anti-CARM1 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Methylates (mono- and asymmetric dimethylation) the guanidino nitrogens of arginyl residues in several proteins involved in DNA packaging, transcription regulation, and mRNA stability. Recruited to promoters upon gene activation together with histone acetyltransferases from EP300/P300 and p160 families, methylates histone H3 at 'Arg-17' and activates transcription via chromatin remodeling. During nuclear hormone receptor activation and TCF7L2/TCF4 activation, acts synergically with EP300/P300 and either one of the p160 histone acetyltransferases NCOA1/SRC1, NCOA2/GRIP1 and NCOA3/ACTR or CTNNB1/beta-catenin to activate transcription. During myogenic transcriptional activation, acts together with NCOA3/ACTR as a coactivator for MEF2C. During monocyte inflammatory stimulation, acts together with EP300/P300 as a coactivator for NF-κ-B. Also seems to be involved in p53/TP53 transcriptional activation. Methylates EP300/P300, both at 'Arg-2142', which may loosen its interaction with NCOA2/GRIP1, and at 'Arg-580' and 'Arg-604' in the KIX domain, which impairs its interaction with CREB and inhibits CREB-dependent transcriptional activation. Also methylates arginine residues in RNA-binding proteins PABPC1, ELAVL1 and ELAV4, which may affect their mRNA-stabilizing properties and the half-life of their target mRNAs.

Expand 1 Items
Loading...
Anti-RELB Rabbit Polyclonal Antibody

Anti-RELB Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric RelB-p50 and RelB-p52 complexes are transcriptional activators. RELB neither associates with DNA nor with RELA/p65 or REL. Stimulates promoter activity in the presence of NFKB2/p49.

Expand 1 Items
Loading...
Genomic DNA purification kit, Fermentas

Genomic DNA purification kit, Fermentas

Supplier: Thermo Fisher Scientific

DNA purification kit is a simple and rapid system for high quality genomic DNA purification from various sources including: whole blood, serum, cell lines, bacterial cells, plant, and mammalian tissues.

Expand 1 Items
Loading...

Fluvastatin 1 * 25 mg

Supplier: Merck Millipore (Calbiochem‎)

Fluvastatin 1 * 25 mg

Expand 1 Items
Loading...

CLOXACILIN 1 * 200 mg

Supplier: EDQM

CLOXACILIN 1 * 200 mg

Expand 1 Items
Loading...

Genomic DNA purification kits, Fast DNA™ SPIN kit for Soil, MP Biomedicals

Supplier: MP Biomedicals

The FastDNA™ SPIN Kit for Soil is designed to efficiently isolate bacterial, fungi, plant and animal genomic DNA from soil and environmental samples.

Expand 1 Items
Loading...
Anti-RELA Rabbit Polyclonal Antibody

Anti-RELA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex

Expand 1 Items
Loading...
Anti-RELA Rabbit Polyclonal Antibody

Anti-RELA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex

Expand 1 Items
Loading...

Folic acid ≥95%, orange powder

Supplier: MP Biomedicals

Folic acid, also known as folate, is a B vitamin that can be found in a variety of fruits and vegetables. It can also be chemically synthesized. Folate, a watersoluble vitamin, helps the body form red blood cells and aids in the formation of genetic material within every body cell. This product exhibits metal binding properties. Hematopoietic vitamin present, free or combined with one or more additional molecules of L-(+)-glutamic acid, in liver, kidney, mushrooms, spinach, yeast, green leaves, and grasses.
Folic acid (Vitamin B9 and folate) is essential to numerous bodily functions. The human body needs folate to synthesize DNA, repair DNA, and methylate DNA as well as to act as a cofactor in certain biological reactions. It is especially important in aiding rapid cell division and growth, such as in infancy and pregnancy.
Folic acid (FA) and dihydrofolic acid (FAH2) are substrates of dihydrofolate reductase(s) which reduce them to tetrahydrofolate (THF), which in turn supports ‘one carbon’ transfer. Tetrahydrofolates are required for de novo synthesis of purines, thymidylic acid and various amino acids and for post-translational methylation (epigenetics).
Very slightly soluble in cold water (0.0016 mg/mL at 25 °C), soluble to about 1% in boiling water. Slightly soluble in methanol, appreciably less soluble in ethanol and butanol. Insoluble in acetone, chloroform, ether, benzene. Relatively soluble in acetic acid, phenol, pyridine, solutions of alkali hydroxides and carbonates. Soluble in hot dilute HCl and H2SO4.

Expand 3 Items
Loading...
Anti-RELA Rabbit Polyclonal Antibody

Anti-RELA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex

Expand 1 Items
Loading...
Anti-RELA Rabbit Polyclonal Antibody

Anti-RELA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex

Expand 1 Items
Loading...
Anti-RELA Rabbit Polyclonal Antibody

Anti-RELA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex.

Expand 1 Items
Loading...
Anti-LCK Rabbit Polyclonal Antibody

Anti-LCK Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosines residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, the microtubule-associated protein MAPT, RHOH or TYROBP.

Expand 1 Items
Loading...
Anti-TNFSF13B Rabbit Polyclonal Antibody

Anti-TNFSF13B Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Simultaneously four different laboratories identified a new member of the tumor necrosis factor (TNF) family. This has been named as TALL-1 , THANK (TNF homologue that activates apoptosis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase , BAFF (for B cell activating factor belonging to the TNF family) and Blys (B lymphocyte stimulator). Membrane-bound BAFF is processed and secreted through the action of a protease whose specificity matches that of the furin family of proprotein convertases. Secreted BLyS/BAFF/THANK acts as a potent B cell growth factor. Overexpression of BLyS/BAFF in transgenic mice lead to increased numbers of mature B and effector T cells. These mice also develop autoimmune like symptoms, such as, high levels of rheumatoid factors, anti-DNA autoantibodies, etc.. Recently, two receptors for BLyS/BAFF have been identified and termed as BCMA and TACI. Members in the TNF superfamily regulate immune responses and induce apoptosis. A novel member in the TNF family was recently identified by several groups and designated BAFF (for B cell Activating Factor belonging to the TNF Family), BLyS (for B Lymphocyte Stimulator), TALL-1 (for TNF- and ApoL-related Leukocyte-expressed Ligand), and THANK (for TNF Homologue that Activate Apoptosis, NF-κB and c-jun N-terminal Kinase). BAFF/BLyS was characterized as a B cell activator since it induced B cell proliferation and immunoglobulin secretion. BAFF and its receptors are essential for B cell development, survival, and humoral immune responses.

Expand 1 Items
Loading...
Anti-MTOR Rabbit Polyclonal Antibody

Anti-MTOR Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Kinase subunit of both mTORC1 and mTORC2, which regulate cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino-acids. Amino-acid-signaling to mTORC1 is mediated by Rag GTPases, which cause amino-acid-induced relocalization of mTOR within the endomembrane system. Growth factor-stimulated mTORC1 activation involves AKT1-mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase that potently activates the protein kinase activity of mTORC1. Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. mTORC1 phosphorylates EIF4EBP1 and releases it from inhibiting the elongation initiation factor 4E (eiF4E). mTORC1 phosphorylates and activates S6K1 at 'Thr-421', which then promotes protein synthesis by phosphorylating PDCD4 and targeting it for degradation. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'.

Expand 1 Items
Loading...

CAFFEINE 1 * 50 mg

Supplier: LGC Standards PROMOCHEM

CAFFEINE 1 * 50 mg

Expand 1 Items
Loading...
Anti-CRYAB Mouse Monoclonal Antibody

Anti-CRYAB Mouse Monoclonal Antibody

Supplier: ProSci Inc.

Crystallin, alpha B.Crystallins are separated into two classes: taxon-specific, or enzyme, and ubiquitous. The latter class constitutes the major proteins of vertebrate eye lens and maintains the transparency and refractive index of the lens. Since lens central fiber cells lose their nuclei during development, these crystallins are made and then retained throughout life, making them extremely stable proteins. Mammalian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystallins are also considered as a superfamily. Alpha and beta families are further divided into acidic and basic groups. Seven protein regions exist in crystallins: four homologous motifs, a connecting peptide, and N- and C-terminal extensions. Alpha crystallins are composed of two gene products: alpha-A and alpha-B, for acidic and basic, respectively. Alpha crystallins can be induced by heat shock and are members of the small heat shock protein (sHSP also known as the HSP20) family. They act as molecular chaperones although they do not renature proteins and release them in the fashion of a true chaperone; instead they hold them in large soluble aggregates. Post-translational modifications decrease the ability to chaperone. These heterogeneous aggregates consist of 30-40 subunits; the alpha-A and alpha-B subunits have a 3:1 ratio, respectively. Two additional functions of alpha crystallins are an autokinase activity and participation in the intracellular architecture. Alpha-A and alpha-B gene products are differentially expressed; alpha-A is preferentially restricted to the lens and alpha-B is expressed widely in many tissues and organs. Elevated expression of alpha-B crystallin occurs in many neurological diseases; a missense mutation cosegregated in a family with a desmin-related myopathy.

Expand 1 Items
Loading...
Anti-RELA Rabbit Polyclonal Antibody

Anti-RELA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex.

Expand 1 Items
Loading...
Anti-TNFRSF13B Rabbit Polyclonal Antibody

Anti-TNFRSF13B Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Simultaneously four different laboratories identified a a new member of the tumor necrosis factor (TNF) family. This has been named as TALL-1 , THANK (TNF homologue that activates apoptosis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase , BAFF (for B cell activating factor belonging to the TNF family) and BlyS (B lymphocyte stimulator). Membrane-bound BAFF is processed and secreted through the action of a protease whose specificity matches that of the furin family of proprotein convertases. The receptor for BlyS/BAFF appears to be expressed predominantly on B cells and activated T cells. Recently two orphan receptors TACI and BCMA (,8) have been shown to be receptors for BlyS/BAFF (6-9). TACI is expressed on B cells and signals through CAML, activating the transcription factors NF-AT, NF-κB, and AP-1. TACI is one of three know receptors for BLys. Members in the TNF superfamily regulate immune responses and induce apoptosis. Two novel members in the TNF family were recently identified and designated BAFF/BLyS/TALL-1/THANK/zTNF4 and April/TALL-2, respectively. BAFF was characterized as a B cell activator since it induced B cell proliferation and immunoglobulin secretion. April regulates immunological and non-immunological cell growth. Three receptors, BCMA, TACI, and BAFF-R, for BAFF and April were recently identified. TACI, like BCMA, binds BAFF and April. TACI and its ligands regulate humoral immune responses, activate NF-κB and c-jun N-terminal kinase, and are involved in B cell associated autoimmune diseases.

Expand 1 Items
Loading...
Anti-MTOR Rabbit Polyclonal Antibody

Anti-MTOR Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Kinase subunit of both mTORC1 and mTORC2, which regulate cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino-acids. Amino-acid-signaling to mTORC1 is mediated by Rag GTPases, which cause amino-acid-induced relocalization of mTOR within the endomembrane system. Growth factor-stimulated mTORC1 activation involves AKT1-mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase that potently activates the protein kinase activity of mTORC1. Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. mTORC1 phosphorylates EIF4EBP1 and releases it from inhibiting the elongation initiation factor 4E (eiF4E). mTORC1 phosphorylates and activates S6K1 at 'Thr-421', which then promotes protein synthesis by phosphorylating PDCD4 and targeting it for degradation. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'.

Expand 1 Items
Loading...
Anti-RELA Rabbit Polyclonal Antibody

Anti-RELA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex.

Expand 1 Items
Loading...
Anti-MTOR Rabbit Polyclonal Antibody

Anti-MTOR Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Kinase subunit of both mTORC1 and mTORC2, which regulate cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino-acids. Amino-acid-signaling to mTORC1 is mediated by Rag GTPases, which cause amino-acid-induced relocalization of mTOR within the endomembrane system. Growth factor-stimulated mTORC1 activation involves AKT1-mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase that potently activates the protein kinase activity of mTORC1. Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. mTORC1 phosphorylates EIF4EBP1 and releases it from inhibiting the elongation initiation factor 4E (eiF4E). mTORC1 phosphorylates and activates S6K1 at 'Thr-421', which then promotes protein synthesis by phosphorylating PDCD4 and targeting it for degradation. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'.

Expand 1 Items
Loading...
Anti-RELA Rabbit Polyclonal Antibody

Anti-RELA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex

Expand 1 Items
Loading...
Anti-RELA Rabbit Polyclonal Antibody

Anti-RELA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex

Expand 1 Items
Loading...
Anti-RELA Rabbit Polyclonal Antibody

Anti-RELA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex

Expand 1 Items
Loading...
Recommended for You