Order Entry
Northern Ireland
ContactUsLinkComponent
188791 results for "Nucleic+Acid+Purification+Kits+and+Reagents&pageNo=50&view=easy"

188791 Results for: "Nucleic+Acid+Purification+Kits+and+Reagents&pageNo=50&view=easy"

Anti-EIF2AK2 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (EIF2S1), this phosphorylation impairs the recycling of EIF2S1 between successive rounds of initiation leading to inhibition of translation which eventually results in shutdown of cellular and viral protein synthesis. Also phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11. In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteosomal degradation. Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding proinflammatory cytokines and IFNs. Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6. Can act as both a positive and negative regulator of the insulin signaling pathway (ISP). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2).

Expand 1 Items
Loading...

RNA isolation, total RNA kit II, E.Z.N.A.®

Supplier: OMEGA BIO-TEK

The E.Z.N.A.® Total RNA kit II is designed for isolating total cellular RNA from tissues rich fibrous and fatty tissues such as skeletal muscle, heart, brain and adipose tissues. Compared to other standard silica-column procedures, the E.Z.N.A.® Total RNA kit II provides higher yield and better quality of RNA from all types of tissue. This kit combines phenol/guanidine-base lysis and the silica membrane purification of RNA technology to provide a rapid and easy method of the isolation of total RNA from any tissue sample. RNA purified using the E.Z.N.A.® Total RNA method is ready for applications such as RT-PCR, Northern blotting, poly A+ RNA (mRNA) purification, nuclease protection, and in vitro translation.

Expand 1 Items
Loading...
Anti-RPS3 Rabbit Polyclonal Antibody

Anti-RPS3 Rabbit Polyclonal Antibody

Supplier: Bioss

Involved in translation as a component of the 40S small ribosomal subunit (PubMed:8706699). Has endonuclease activity and plays a role in repair of damaged DNA (PubMed:7775413). Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA (PubMed:15707971). Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS) (PubMed:14706345). Has also been shown to bind with similar affinity to intact and damaged DNA (PubMed:18610840). Stimulates the N-glycosylase activity of the base excision protein OGG1 (PubMed:15518571). Enhances the uracil excision activity of UNG1 (PubMed:18973764). Also stimulates the cleavage of the phosphodiester backbone by APEX1 (PubMed:18973764). When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage (PubMed:23911537). Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide (PubMed:17049931). Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes (PubMed:18045535). Represses its own translation by binding to its cognate mRNA (PubMed:20217897). Binds to and protects TP53/p53 from MDM2-mediated ubiquitination (PubMed:19656744). Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization (PubMed:23131551). Involved in induction of apoptosis through its role in activation of CASP8 (PubMed:14988002). Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5 (PubMed:20605787). Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation (PubMed:22510408).

Expand 1 Items
Loading...
Anti-GSS Rabbit Polyclonal Antibody

Anti-GSS Rabbit Polyclonal Antibody

Supplier: Bioss

GSS (Glutathione synthetase) is a 474 amino acid protein encoded by the gene located at human chromosome 20q11.2. GSS consists of three loops projecting from an antiparallel ∫-sheet, a parallel ∫-sheet and a lid of anti-parallel sheets, which provide access to the ATP-binding site. Although Southern blot and gene analysis suggest that GSS may be the only member of a unique family, the crystal structure indicates that GSS belongs to the ATP-GRASP superfamily. GSS is expressed in hemocytes and nucleated cells, including the brain. GSS occurs as a homodimer. There are two steps in the production of Glutathione, begining with GSS (Glutathione synthetase) is a 474 amino acid protein encoded by the gene located at human chromosome 20q11.2. GSS consists of three loops projecting from an antiparallel ∫-sheet, a parallel ∫-sheet and a lid of anti-parallel sheets, which provide access to the ATP-binding site. Although Southern blot and gene analysis suggest that GSS may be the only member of a unique family, the crystal structure indicates that GSS belongs to the ATP-GRASP superfamily. GSS is expressed in hemocytes and nucleated cells, including the brain. GSS occurs as a homodimer. There are two steps in the production of Glutathione, begining with ©-GCS and ending with GSS. In an ATP-dependent reaction, GSS produces Glutathione from ©-glutamylcysteine and glycine precursors. Partial hepatectomy, diethyl maleate, buthionine sulfoximine, tert-butylhaydroquinone and thioacetamide increase the ex-pression of GSS, which causes an increase in Glutathione levels. An inherited autosomal recessive disorder, 5-oxoprolinuria (pyroglutamic aciduria), is caused by GSS deficiencies, which leads to central nervous system damage, hemolytic anemia, metabolic acidosis and urinary excretion of 5-oxoproline. A missense mutation in the gene encoding GSS leads to a GSS deficiency restricted to erythrocytes, which causes only hemolytic anemia.-GCS and ending with GSS.

Expand 1 Items
Loading...

Anti-TGFBR3 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

Membrane Receptors Transforming growth factor beta is a multifunctional cytokine known to modulate several tissue development and repair processes, including cell differentiation, cell cycle progression, cellular migration, adhesion, and extracellular matrix production. There are 3 forms encoded by separate genes TGFB1, TGFB2, and TGFB3. The diverse effects of TGF beta are mediated by the TGF beta receptors and cell surface binding proteins. In addition to type I TGF beta receptor (TGFBR1) and type II (TFGBR2), type III (TGF beta III receptor) has been identified. It is a glycoprotein that binds TGF beta and exists in both a membrane bound and a soluble form. It may serve as a receptor accessory molecule in both the TGF beta and fibroblast growth factor systems. TGF beta III receptor lacks a recognizable signaling domain and has no clearly defined role in TGF beta signaling. Endothelial cells undergoing epithelial mesenchymal transformation express TGF beta III receptor, and TGF beta III receptor specific antisera inhibits mesenchyme formation and migration. Misexpression of TGF beta III receptor in nontransforming ventricular endothelial cells conferrs transformation in response to TGFB2. These results support a model where TGF beta III receptor localizes transformation in the heart and plays an essential, nonredundant role in TGF beta signaling. TGF beta III receptor, or beta glycan, can function as an inhibin coreceptor with ActRII. TGF beta III receptor binds inhibin with high affinity and enhances binding in cells coexpressing ActRII and TGF beta III receptor. Inhibin forms crosslinked complexes with both recombinant and endogenously expressed TGF beta III receptor and ActRII. TGF beta III receptor confers inhibin sensitivity to cell lines that otherwise respond poorly to this hormone.

Expand 1 Items
Loading...

Anti-STK11 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP53. Acts as a key upstream regulator of AMPK by mediating phosphorylation and activation of AMPK catalytic subunits PRKAA1 and PRKAA2 and thereby regulates processes including: inhibition of signaling pathways that promote cell growth and proliferation when energy levels are low, glucose homeostasis in liver, activation of autophagy when cells undergo nutrient deprivation, and B-cell differentiation in the germinal center in response to DNA damage. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton. Required for cortical neuron polarization by mediating phosphorylation and activation of BRSK1 and BRSK2, leading to axon initiation and specification. Involved in DNA damage response: interacts with p53/TP53 and recruited to the CDKN1A/WAF1 promoter to participate in transcription activation. Able to phosphorylate p53/TP53; the relevance of such result in vivo is however unclear and phosphorylation may be indirect and mediated by downstream STK11/LKB1 kinase NUAK1. Also acts as a mediator of p53/TP53-dependent apoptosis via interaction with p53/TP53: translocates to the mitochondrion during apoptosis and regulates p53/TP53-dependent apoptosis pathways. In vein endothelial cells, inhibits PI3K/Akt signaling activity and thus induces apoptosis in response to the oxidant peroxynitrite (in vitro). Regulates UV radiation-induced DNA damage response mediated by CDKN1A.

Expand 1 Items
Loading...

Anti-ADAR Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence.

Expand 1 Items
Loading...

Anti-RPS3 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

Involved in translation as a component of the 40S small ribosomal subunit (PubMed:8706699). Has endonuclease activity and plays a role in repair of damaged DNA (PubMed:7775413). Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA (PubMed:15707971). Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS) (PubMed:14706345). Has also been shown to bind with similar affinity to intact and damaged DNA (PubMed:18610840). Stimulates the N-glycosylase activity of the base excision protein OGG1 (PubMed:15518571). Enhances the uracil excision activity of UNG1 (PubMed:18973764). Also stimulates the cleavage of the phosphodiester backbone by APEX1 (PubMed:18973764). When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage (PubMed:23911537). Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide (PubMed:17049931). Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes (PubMed:18045535). Represses its own translation by binding to its cognate mRNA (PubMed:20217897). Binds to and protects TP53/p53 from MDM2-mediated ubiquitination (PubMed:19656744). Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization (PubMed:23131551). Involved in induction of apoptosis through its role in activation of CASP8 (PubMed:14988002). Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5 (PubMed:20605787). Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation (PubMed:22510408).

Expand 1 Items
Loading...

Anti-EIF2AK2 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (EIF2S1), this phosphorylation impairs the recycling of EIF2S1 between successive rounds of initiation leading to inhibition of translation which eventually results in shutdown of cellular and viral protein synthesis. Also phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11. In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteosomal degradation. Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding proinflammatory cytokines and IFNs. Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6. Can act as both a positive and negative regulator of the insulin signaling pathway (ISP). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2).

Expand 1 Items
Loading...

Anti-B4GALT7 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.

Expand 1 Items
Loading...

Anti-EIF2AK2 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (EIF2S1), this phosphorylation impairs the recycling of EIF2S1 between successive rounds of initiation leading to inhibition of translation which eventually results in shutdown of cellular and viral protein synthesis. Also phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11. In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteosomal degradation. Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding proinflammatory cytokines and IFNs. Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6. Can act as both a positive and negative regulator of the insulin signaling pathway (ISP). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2).

Expand 1 Items
Loading...

Anti-EIF2AK2 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (EIF2S1), this phosphorylation impairs the recycling of EIF2S1 between successive rounds of initiation leading to inhibition of translation which eventually results in shutdown of cellular and viral protein synthesis. Also phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11. In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteosomal degradation. Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding proinflammatory cytokines and IFNs. Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6. Can act as both a positive and negative regulator of the insulin signaling pathway (ISP). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2).

Expand 1 Items
Loading...

Anti-B4GALT7 Rabbit Polyclonal Antibody (Alexa Fluor® 647)

Supplier: Bioss

β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.

Expand 1 Items
Loading...

Anti-B4GALT7 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.

Expand 1 Items
Loading...

Anti-HLA-DPB1 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

Binds peptides derived from antigens that access the endocytic route of antigen presenting cells (APC) and presents them on the cell surface for recognition by the CD4 T-cells. The peptide binding cleft accommodates peptides of 10-30 residues. The peptides presented by MHC class II molecules are generated mostly by degradation of proteins that access the endocytic route, where they are processed by lysosomal proteases and other hydrolases. Exogenous antigens that have been endocytosed by the APC are thus readily available for presentation via MHC II molecules, and for this reason this antigen presentation pathway is usually referred to as exogenous. As membrane proteins on their way to degradation in lysosomes as part of their normal turn-over are also contained in the endosomal/lysosomal compartments, exogenous antigens must compete with those derived from endogenous components. Autophagy is also a source of endogenous peptides, autophagosomes constitutively fuse with MHC class II loading compartments. In addition to APCs, other cells of the gastrointestinal tract, such as epithelial cells, express MHC class II molecules and CD74 and act as APCs, which is an unusual trait of the GI tract. To produce a MHC class II molecule that presents an antigen, three MHC class II molecules (heterodimers of an alpha and a beta chain) associate with a CD74 trimer in the ER to form a heterononamer. Soon after the entry of this complex into the endosomal/lysosomal system where antigen processing occurs, CD74 undergoes a sequential degradation by various proteases, including CTSS and CTSL, leaving a small fragment termed CLIP (class-II-associated invariant chain peptide). The removal of CLIP is facilitated by HLA-DM via direct binding to the alpha-beta-CLIP complex so that CLIP is released. HLA-DM stabilizes MHC class II molecules until primary high affinity antigenic peptides are bound. The MHC II molecule bound to a peptide is then transported to the cell membrane surface.

Expand 1 Items
Loading...
Anti-NFATC4 Rabbit Polyclonal Antibody

Anti-NFATC4 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

NFATC4 is a member of the nuclear factors of activated T cells DNA-binding transcription complex. This complex consists of at least two components: a preexisting cytosolic component that translocates to the nucleus upon T cell receptor (TCR) stimulation and an inducible nuclear component. Other members of this family of nuclear factors of activated T cells also participate in the formation of this complex. NFATC4 plays a role in the inducible expression of cytokine genes in T cells, especially in the induction of the IL-2 and IL-4.The product of this gene is a member of the nuclear factors of activated T cells DNA-binding transcription complex. This complex consists of at least two components: a preexisting cytosolic component that translocates to the nucleus upon T cell receptor (TCR) stimulation and an inducible nuclear component. Other members of this family of nuclear factors of activated T cells also participate in the formation of this complex. The product of this gene plays a role in the inducible expression of cytokine genes in T cells, especially in the induction of the IL-2 and IL-4.The product of this gene is a member of the nuclear factors of activated T cells DNA-binding transcription complex. This complex consists of at least two components: a preexisting cytosolic component that translocates to the nucleus upon T cell receptor (TCR) stimulation and an inducible nuclear component. Other members of this family of nuclear factors of activated T cells also participate in the formation of this complex. The product of this gene plays a role in the inducible expression of cytokine genes in T cells, especially in the induction of the IL-2 and IL-4. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Anti-GP6 Rabbit Polyclonal Antibody

Anti-GP6 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Glycoprotein VI (GP6) is a 58-kD platelet membrane glycoprotein that plays a crucial role in the collagen-induced activation and aggregation of platelets. Collagen receptor involved in collagen-induced platelet adhesion and activation. GP6 plays a key role in platelet procoagulant activity and subsequent thrombin and fibrin formation. This procoagulant function may contribute to arterial and venous thrombus formation. The signaling pathway involves the FcR gamma-chain, the Src kinases (likely Fyn/Lyn), the adapter protein LAT and leads to the activation of phospholipase C gamma2.Glycoprotein VI (GP6) is a 58-kD platelet membrane glycoprotein that plays a crucial role in the collagen-induced activation and aggregation of platelets. Upon injury to the vessel wall and subsequent damage to the endothelial lining, exposure of the subendothelial matrix to blood flow results in deposition of platelets. Collagen fibers are the most thrombogenic macromolecular components of the extracellular matrix, with collagen types I, III, and VI being the major forms found in blood vessels. Platelet interaction with collagen occurs as a 2-step procedure: (1) the initial adhesion to collagen is followed by (2) an activation step leading to platelet secretion, recruitment of additional platelets, and aggregation. In physiologic conditions, the resulting platelet plug is the initial hemostatic event limiting blood loss. However, exposure of collagen after rupture of atherosclerotic plaques is a major stimulus of thrombus formation associated with myocardial infarction or stroke (Jandrot-Perrus et al., 2000 [PubMed 10961879]).[supplied by OMIM].

Expand 1 Items
Loading...
Anti-IDH2 Rabbit Polyclonal Antibody

Anti-IDH2 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Isocitrate dehydrogenases catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. These enzymes belong to two distinct subclasses, one of which utilizes NAD (+) as the electron acceptor and the other NADP (+). Five isocitrate dehydrogenases have been reported: three NAD (+)-dependent isocitrate dehydrogenases, which localize to the mitochondrial matrix, and two NADP (+)-dependent isocitrate dehydrogenases, one of which is mitochondrial and the other predominantly cytosolic. Each NADP (+)-dependent isozyme is a homodimer. IDH2 is the NADP (+)-dependent isocitrate dehydrogenase found in the mitochondria. It plays a role in intermediary metabolism and energy production. This protein may tightly associate or interact with the pyruvate dehydrogenase complex.Isocitrate dehydrogenases catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. These enzymes belong to two distinct subclasses, one of which utilizes NAD (+) as the electron acceptor and the other NADP (+). Five isocitrate dehydrogenases have been reported: three NAD (+)-dependent isocitrate dehydrogenases, which localize to the mitochondrial matrix, and two NADP (+)-dependent isocitrate dehydrogenases, one of which is mitochondrial and the other predominantly cytosolic. Each NADP (+)-dependent isozyme is a homodimer. The protein encoded by this gene is the NADP (+)-dependent isocitrate dehydrogenase found in the mitochondria. It plays a role in intermediary metabolism and energy production. This protein may tightly associate or interact with the pyruvate dehydrogenase complex. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Anti-P4HB Rabbit Polyclonal Antibody

Anti-P4HB Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

P4HB is the beta subunit of prolyl 4-hydroxylase, a highly abundant multifunctional enzyme that belongs to the protein disulfide isomerase family. When present as a tetramer consisting of two alpha and two beta subunits, this enzyme is involved in hydroxylation of prolyl residues in preprocollagen. This enzyme is also a disulfide isomerase containing two thioredoxin domains that catalyze the formation, breakage and rearrangement of disulfide bonds. Other known functions include its ability to act as a chaperone that inhibits aggregation of misfolded proteins in a concentration-dependent manner, its ability to bind thyroid hormone, its role in both the influx and efflux of S-nitrosothiol-bound nitric oxide, and its function as a subunit of the microsomal triglyceride transfer protein complex.This gene encodes the beta subunit of prolyl 4-hydroxylase, a highly abundant multifunctional enzyme that belongs to the protein disulfide isomerase family. When present as a tetramer consisting of two alpha and two beta subunits, this enzyme is involved in hydroxylation of prolyl residues in preprocollagen. This enzyme is also a disulfide isomerase containing two thioredoxin domains that catalyze the formation, breakage and rearrangement of disulfide bonds. Other known functions include its ability to act as a chaperone that inhibits aggregation of misfolded proteins in a concentration-dependent manner, its ability to bind thyroid hormone, its role in both the influx and efflux of S-nitrosothiol-bound nitric oxide, and its function as a subunit of the microsomal triglyceride transfer protein complex. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Anti-KCNV2 Rabbit Polyclonal Antibody

Anti-KCNV2 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium voltage-gated channel subfamily V. This member is identified as a 'silent subunit', and it does not form homomultimers, but forms heteromultimers with several other subfamily members. Through obligatory heteromerization, it exerts a function-altering effect on other potassium channel subunits. KCNV2 is strongly expressed in pancreas and has a weaker expression in several other tissues.Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium voltage-gated channel subfamily V. This member is identified as a 'silent subunit', and it does not form homomultimers, but forms heteromultimers with several other subfamily members. Through obligatory heteromerization, it exerts a function-altering effect on other potassium channel subunits. This protein is strongly expressed in pancreas and has a weaker expression in several other tissues.

Expand 1 Items
Loading...
Anti-TRIM23 Rabbit Polyclonal Antibody

Anti-TRIM23 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

TRIM23 is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. This protein is also a member of the ADP ribosylation factor family of guanine nucleotide-binding family of proteins. Its carboxy terminus contains an ADP-ribosylation factor domain and a guanine nucleotide binding site, while the amino terminus contains a GTPase activating protein domain which acts on the guanine nucleotide binding site. The protein localizes to lysosomes and the Golgi apparatus. It plays a role in the formation of intracellular transport vesicles, their movement from one compartment to another, and phopholipase D activation. Three alternatively spliced transcript variants for this gene have been described. The protein encoded by this gene is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. This protein is also a member of the ADP ribosylation factor family of guanine nucleotide-binding family of proteins. Its carboxy terminus contains an ADP-ribosylation factor domain and a guanine nucleotide binding site, while the amino terminus contains a GTPase activating protein domain which acts on the guanine nucleotide binding site. The protein localizes to lysosomes and the Golgi apparatus. It plays a role in the formation of intracellular transport vesicles, their movement from one compartment to another, and phopholipase D activation. Three alternatively spliced transcript variants for this gene have been described.

Expand 1 Items
Loading...
Anti-CHGA Rabbit Polyclonal Antibody

Anti-CHGA Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

CHGA is a member of the chromogranin/secretogranin family of neuroendocrine secretory proteins. It is found in secretory vesicles of neurons and endocrine cells. Its gene's product is a precursor to three biologically active peptides; vasostatin, pancreastatin, and parastatin. These peptides act as autocrine or paracrine negative modulators of the neuroendocrine system. Other peptides, including chromostatin, beta-granin, WE-14 and GE-25, are also derived from the full-length protein. However, biological activities for these molecules have not been shown.The protein encoded by this gene is a member of the chromogranin/secretogranin family of neuroendocrine secretory proteins. It is found in secretory vesicles of neurons and endocrine cells. This gene product is a precursor to three biologically active peptides; vasostatin, pancreastatin, and parastatin. These peptides act as autocrine or paracrine negative modulators of the neuroendocrine system. Other peptides, including chromostatin, beta-granin, WE-14 and GE-25, are also derived from the full-length protein. However, biological activities for these molecules have not been shown.The protein encoded by this gene is a member of the chromogranin/secretogranin family of neuroendocrine secretory proteins. It is found in secretory vesicles of neurons and endocrine cells. This gene product is a precursor to three biologically active peptides; vasostatin, pancreastatin, and parastatin. These peptides act as autocrine or paracrine negative modulators of the neuroendocrine system. Other peptides, including chromostatin, beta-granin, WE-14 and GE-25, are also derived from the full-length protein. However, biological activities for these molecules have not been shown.

Expand 1 Items
Loading...
Anti-RBL1 Rabbit Polyclonal Antibody

Anti-RBL1 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

RBL1 is similar in sequence and possibly function to the product of the retinoblastoma 1 (RB1) gene. The RB1 gene product is a tumor suppressor protein that appears to be involved in cell cycle regulation, as it is phosphorylated in the S to M phase transition and is dephosphorylated in the G1 phase of the cell cycle. Both the RB1 protein and the product of this gene can form a complex with adenovirus E1A protein and SV40 large T-antigen, with the SV40 large T-antigen binding only to the unphosphorylated form of each protein. In addition, both proteins can inhibit the transcription of cell cycle genes containing E2F binding sites in their promoters. Due to the sequence and biochemical similarities with the RB1 protein, it is thought that the protein encoded by this gene may also be a tumor suppressor. The protein encoded by this gene is similar in sequence and possibly function to the product of the retinoblastoma 1 (RB1) gene. The RB1 gene product is a tumor suppressor protein that appears to be involved in cell cycle regulation, as it is phosphorylated in the S to M phase transition and is dephosphorylated in the G1 phase of the cell cycle. Both the RB1 protein and the product of this gene can form a complex with adenovirus E1A protein and SV40 large T-antigen, with the SV40 large T-antigen binding only to the unphosphorylated form of each protein. In addition, both proteins can inhibit the transcription of cell cycle genes containing E2F binding sites in their promoters. Due to the sequence and biochemical similarities with the RB1 protein, it is thought that the protein encoded by this gene may also be a tumor suppressor. Two transcript variants encoding different isoforms have been found for this gene.

Expand 1 Items
Loading...
Anti-ACVR1 Rabbit Polyclonal Antibody

Anti-ACVR1 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Activin receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors. ACVR1 is activin A type I receptor which signals a particular transcriptional response in concert with activin type II receptors.Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I ( I and IB) and two type II (II and IIB) receptors. These receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors. This gene encodes activin A type I receptor which signals a particular transcriptional response in concert with activin type II receptors.

Expand 1 Items
Loading...
Anti-LCK Rabbit Polyclonal Antibody

Anti-LCK Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosines residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, the microtubule-associated protein MAPT, RHOH or TYROBP.

Expand 1 Items
Loading...
Adhesive-backed floor mats, PIG® Grippy®

Adhesive-backed floor mats, PIG® Grippy®

Supplier: NEW PIG

Prevent slips, trips and falls in high traffic areas with our easy to clean, adhesive backed commercial floor mat.

Expand 6 Items
Loading...

Human recombinant IL20 (fromE. coli)

Supplier: ProSci Inc.

Interleukin-20 (IL-20) is a member of the IL-10 family of regulatory cytokines that includes IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26. Members of this family share partial homology in their amino acid sequences but they are dissimilar in their biological functions. IL-20 exhibits approximately 28% amino acid identity with IL-10 and 76% amino acid identity with mouse IL-20. There are two heterodimeric receptor complexes for IL-20. The first is composed of IL-20 R alpha and IL-20 R beta . The second is composed of IL-22 R and IL-20 R beta . Whereas the IL-22 R/IL-20 R beta complex is shared with IL-24, the IL-20 R alpha/IL-20 R beta complex is shared with both IL-19 and IL-24. IL-20 has been shown to initiate transduction cascades involving STAT3 and stimulates the induction of pro-inflammatory genes including TNF- alpha and MCP-1. Initial functional studies using transgenic mice suggest that IL-20 has the ability to regulate skin development. The over-expression of both human and mouse forms of IL-20 results in keratinocyte hyper-proliferation, abnormal epidermal differentiation, and neonatal lethality. In humans, IL-20 and its receptors are up-regulated in psoriatic skin, and polymorphisms in the IL-20 gene have been associated with plaque-type psoriasis. IL-20 may also have a role in hematopoiesis. It enhances the proliferation of multi-potential progenitors in vitro and increases their numbers and cell cycling status in IL-20 transgenic mice. IL-20 is also shown to suppress COX-2 and PGE2 and acts as an inhibitor of angiogenesis in model systems.

Expand 1 Items
Loading...
Anti-COL1A2 Rabbit Polyclonal Antibody

Anti-COL1A2 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

COL1A2 is the pro-alpha2 chain of type I collagen whose triple helix comprises two alpha1 chains and one alpha2 chain. Type I is a fibril-forming collagen found in most connective tissues and is abundant in bone, cornea, dermis and tendon. Mutations in this gene are associated with osteogenesis imperfecta types I-IV, Ehlers-Danlos syndrome type VIIB, recessive Ehlers-Danlos syndrome Classical type, idiopathic osteoporosis, and atypical Marfan syndrome. Symptoms associated with mutations in this gene, however, tend to be less severe than mutations in the gene for the alpha1 chain of type I collagen (COL1A1) reflecting the different role of alpha2 chains in matrix integrity.This gene encodes the pro-alpha2 chain of type I collagen whose triple helix comprises two alpha1 chains and one alpha2 chain. Type I is a fibril-forming collagen found in most connective tissues and is abundant in bone, cornea, dermis and tendon. Mutations in this gene are associated with osteogenesis imperfecta types I-IV, Ehlers-Danlos syndrome type VIIB, recessive Ehlers-Danlos syndrome Classical type, idiopathic osteoporosis, and atypical Marfan syndrome. Symptoms associated with mutations in this gene, however, tend to be less severe than mutations in the gene for the alpha1 chain of type I collagen (COL1A1) reflecting the different role of alpha2 chains in matrix integrity. Three transcripts, resulting from the use of alternate polyadenylation signals, have been identified for this gene. [provided by R. Dalgleish]. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Anti-CYP1A1 Rabbit Polyclonal Antibody

Anti-CYP1A1 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

CYP1A1 is a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by some polycyclic aromatic hydrocarbons (PAHs), some of which are found in cigarette smoke. The enzyme's endogenous substrate is unknown; however, it is able to metabolize some PAHs to carcinogenic intermediates. CYP1A1 has been associated with lung cancer risk. This gene, CYP1A1, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by some polycyclic aromatic hydrocarbons (PAHs), some of which are found in cigarette smoke. The enzyme's endogenous substrate is unknown; however, it is able to metabolize some PAHs to carcinogenic intermediates. The gene has been associated with lung cancer risk. A related family member, CYP1A2, is located approximately 25 kb away from CYP1A1 on chromosome 15. Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the sequence consistent with the reference genome assembly. The genomic coordinates used for the transcript record were based on alignments. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Anti-HOXD4 Rabbit Polyclonal Antibody

Anti-HOXD4 Rabbit Polyclonal Antibody

Supplier: ProSci Inc.

HOXD4 belongs to the homeobox family of genes. The homeobox genes encode a highly conserved family of transcription factors that play an important role in morphogenesis in all multicellular organisms. Mammals possess four similar homeobox gene clusters, HOXA, HOXB, HOXC and HOXD, located on different chromosomes, consisting of 9 to 11 genes arranged in tandem. This gene is one of several homeobox HOXD genes located at 2q31-2q37 chromosome regions. Deletions that removed the entire HOXD gene cluster or 5' end of this cluster have been associated with severe limb and genital abnormalities. The protein encoded by this gene may play a role in determining positional values in developing limb buds. Alternatively spliced variants have been described but their full length nature has not been determined.This gene belongs to the homeobox family of genes. The homeobox genes encode a highly conserved family of transcription factors that play an important role in morphogenesis in all multicellular organisms. Mammals possess four similar homeobox gene clusters, HOXA, HOXB, HOXC and HOXD, located on different chromosomes, consisting of 9 to 11 genes arranged in tandem. This gene is one of several homeobox HOXD genes located at 2q31-2q37 chromosome regions. Deletions that removed the entire HOXD gene cluster or 5' end of this cluster have been associated with severe limb and genital abnormalities. The protein encoded by this gene may play a role in determining positional values in developing limb buds. Alternatively spliced variants have been described but their full length nature has not been determined.

Expand 1 Items
Loading...
Recommended for You