204125 Results for: "Amberlite\u00AE+HPR4200+(Cl)&pageNo=50"
Human recombinant EDAR (from CHO cells)
Supplier: ProSci Inc.
The TNF family ligand ectodysplasin A (EDA) and its receptor EDAR are required for proper development of skin appendages such as hair, teeth, and eccrine sweat glands. Loss of function mutations in the Eda gene cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition that can be ameliorated in mice and dogs by timely administration of recombinant EDA. The Eda gene on the X chromosome is transcribed as multiple splice variants, only two of which code for the receptor-binding C-terminal TNF homology domain. These two variants code for 391- and 389-amino acid-long proteins called EDA1 and EDA2. EDA1 binds EDAR, whereas EDA2 binds to another receptor, XEDAR. The biology of EDA2 and XEDAR is distinct from that of EDA1. Indeed, XEDAR-deficient mice have no obvious ectodermal dysplasia phenotype, whereas mice deficient in EDA, EDAR, or the signalling adaptor protein EDARADD all display virtually indistinguishable ectodermal dysplasia phenotypes, indicating the predominance of the EDA1-EDAR axis in the development of skin-derived appendages.
Expand 1 Items
Ice cubers, self contained, ACM and EC series
Supplier: SCOTSMAN
ACM ice cubers:
The ACM series self contained ice cube makers are air cooled, electronically controlled and manufactured from 304 stainless steel. They produce standard medium thimble shaped super cubes that are very hard and crystal clear. Thimble shaped cubes have a large surface area so that they melt slower than a standard cube and makes them better for chilling. It also means that they are less likely to stick together in the integral storage bin or in an ice bucket. The ice cubers require a 19 mm (0,75") ‘washing machine' type tapped mains water supply, a correctly rated power supply and a 38 mm (1,5") vented drain (ideally no higher than the base of the machine) within one metre of the machines intended position before delivery.
With integral ice cube storage bin.
Expand 3 Items
L-Arginine hydrochloride for SILAC
Supplier: Thermo Fisher Scientific
L-Arginine hydrochloride for SILAC
Expand 1 Items
Anti-PATJ Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
INADL is a protein with multiple PDZ domains. PDZ domains mediate protein-protein interactions, and proteins with multiple PDZ domains often organize multimeric complexes at the plasma membrane. This protein localizes to tight junctions and to the apical membrane of epithelial cells. A similar protein in Drosophila is a scaffolding protein which tethers several members of a multimeric signaling complex in photoreceptors.This gene encodes a protein with multiple PDZ domains. PDZ domains mediate protein-protein interactions, and proteins with multiple PDZ domains often organize multimeric complexes at the plasma membrane. This protein localizes to tight junctions and to the apical membrane of epithelial cells. A similar protein in Drosophila is a scaffolding protein which tethers several members of a multimeric signaling complex in photoreceptors. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.
Expand 1 Items
Spare piston for akku-drive 50ml 1 * 1 items
Supplier: HIRSCHMANN
Spare piston for akku-drive 50ml 1 * 1 items
Expand 1 Items
Anti-CASP3 Rabbit Polyclonal Antibody
Supplier: Bioss
The caspase family of cysteine proteases play a key role in apoptosis. Caspase 3 is the most extensively studied apoptotic protein among caspase family members. Caspase 3 is synthesized as inactive pro enzyme that is processed in cells undergoing apoptosis by self proteolysis and/or cleavage by other upstream proteases (e.g. Caspases 8, 9 and 10). The processed form of Caspase 3 consists of large (17kDa) and small (12kDa) subunits which associate to form an active enzyme. Caspase 3 is cleaved at Asp28 Ser29 and Asp175 Ser176. The active Caspase 3 proteolytically cleaves and activates other caspases (e.g. Caspases 6, 7 and 9), as well as relevant targets in the cells (e.g. PARP and DFF). Alternative splicing of this gene results in two transcript variants which encode the same protein. In immunohistochemical studies Caspase 3 expression has been shown to be widespread but not present in all cell types (e.g. commonly reported in epithelial cells of skin, renal proximal tubules and collecting ducts). Differences in the level of Caspase 3 have been reported in cells of short lived nature (eg germinal centre B cells) and those that are long lived (eg mantle zone B cells). Caspase 3 is the predominant caspase involved in the cleavage of amyloid beta 4A precursor protein, which is associated with neuronal death in Alzheimer's disease.
Expand 1 Items
Anti-ERBB3 Rabbit Polyclonal Antibody
Supplier: Bioss
ErbB3 is a member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. ErbB3 is a membrane-bound protein which has a neuregulin binding domain but not an active kinase domain. It can therefore bind this ligand but cannot convey a signal into the cell via protein phosphorylation. However it does form heterodimers with other EGF receptor family members which do have kinase activity. Heterodimerization leads to the activation of pathways which lead to cell proliferation or differentiation. Amplification of this gene and/or overexpression of its protein have been reported in numerous cancers including prostate, bladder and breast tumors. Alternate transcriptional splice variants encoding different isoforms have been characterized. Isoform 2 lacks the intermembrane region and is secreted outside the cell. This form acts to modulate the activity of the membrane-bound form. Additional splice variants have also been reported but they have not been thoroughly characterized. Defects in ERBB3 are the cause of lethal congenital contracture syndrome type 2 (LCCS2); also called Israeli Bedouin multiple contracture syndrome type A. LCCS2 is an autosomal recessive neurogenic form of a neonatally lethal arthrogryposis that is associated with atrophy of the anterior horn of the spinal cord.
Expand 1 Items
Anti-ERBB3 Rabbit Polyclonal Antibody
Supplier: Bioss
ErbB3 is a member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. ErbB3 is a membrane-bound protein which has a neuregulin binding domain but not an active kinase domain. It can therefore bind this ligand but cannot convey a signal into the cell via protein phosphorylation. However it does form heterodimers with other EGF receptor family members which do have kinase activity. Heterodimerization leads to the activation of pathways which lead to cell proliferation or differentiation. Amplification of this gene and/or overexpression of its protein have been reported in numerous cancers including prostate, bladder and breast tumors. Alternate transcriptional splice variants encoding different isoforms have been characterized. Isoform 2 lacks the intermembrane region and is secreted outside the cell. This form acts to modulate the activity of the membrane-bound form. Additional splice variants have also been reported but they have not been thoroughly characterized. Defects in ERBB3 are the cause of lethal congenital contracture syndrome type 2 (LCCS2); also called Israeli Bedouin multiple contracture syndrome type A. LCCS2 is an autosomal recessive neurogenic form of a neonatally lethal arthrogryposis that is associated with atrophy of the anterior horn of the spinal cord.
Expand 1 Items
Anti-PAFAH1B1 Rabbit Polyclonal Antibody
Supplier: Bioss
Required for proper activation of Rho GTPases and actin polymerization at the leading edge of locomoting cerebellar neurons and postmigratory hippocampal neurons in response to calcium influx triggered via NMDA receptors. Non-catalytic subunit of an acetylhydrolase complex which inactivates platelet-activating factor (PAF) by removing the acetyl group at the SN-2 position (By similarity). Positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus end. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the peripheral transport of microtubule fragments and the coupling of the nucleus and centrosome. Required during brain development for the proliferation of neuronal precursors and the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Neuronal migration involves a process called nucleokinesis, whereby migrating cells extend an anterior process into which the nucleus subsequently translocates. During nucleokinesis dynein at the nuclear surface may translocate the nucleus towards the centrosome by exerting force on centrosomal microtubules. May also play a role in other forms of cell locomotion including the migration of fibroblasts during wound healing.
Expand 1 Items
Anti-DPYD Rabbit Polyclonal Antibody
Supplier: Bioss
Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterized by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
Expand 1 Items
Anti-DPYD Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterized by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
Expand 1 Items
Anti-DPYD Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterized by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
Expand 1 Items
Anti-DPYD Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterized by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
Expand 1 Items
Anti-ATF2 Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
ATF2 is a member of the ATF/CREB family of basic region leucine zipper DNA binding proteins that regulates transcription by binding to a consensus cAMP response element (CRE) in the promoter of various viral and cellular genes. Many of these genes are important in cell growth and differentiation, and in stress and immune responses. ATF2 is a nuclear protein that binds DNA as a dimer and can form dimers with members of the ATF/CREB and Jun/Fos families. It is a stronger activator as a heterodimer with cJun than as a homodimer. Several isoforms of ATF2 arise by differential splicing. The stable native full length ATF2 is transcriptionally inactive as a result of an inhibitory direct intramolecular interaction of its carboxy terminal DNA binding domain with the amino terminal transactivation domain. Following dimerization ATF2 becomes a short lived protein that undergoes ubiquitination and proteolysis, seemingly in a protein phosphatase-dependent mechanism. Stimulation of the transcriptional activity of ATF2 occurs following cellular stress induced by several genotoxic agents, inflammatory cytokines, and UV irradiation. This activation requires phosphorylation of two threonine residues in ATF2 by both JNK/SAP kinase and p38 MAP kinase. ATF2 is abundantly expressed in brain.
Expand 1 Items
Anti-PPP1R9A Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Brain-specific neurabin I (neural tissue-specific F-actin binding protein I) is highly concentrated in the synapse of developed neurons; it localizes in the growth cone lamellipodia during neuronal development (1). Suppression of endogenous neurabin in rat hippocampal neurons inhibits neurite formation (1). Neurabin I recruits active PP1 via a PP1-docking sequence; mutation of the PP1-binding motif halts filopodia and restores stress fibers in neurabin I-expressing cells (2,3). Neurabin II (Spinophilin) is ubiquitously expressed but is abundantly expressed in brain (4). Neurabin II localizes to neuronal dentritic spines, which are the specialized protrusions from dendritic shafts that receive most of the excitatory input in the CNS (5). Neurabin II may regulate dendritic spine properties as neurabin II(-) mice have increased spine density during development in vitro and exhibit altered filopodial formation in cultured cells (5). Neurabin may also play a role in glutamatergic transmission as Neurabin II(-) mice exhibit reduced long-term depression and resistance to kainate-induced seizures and neronal apoptosis (5). Neurabin II complexes with the catalytic subunit of protein phosphatase-1 (PP1) in vitro thus modulating the activity of PP1 (4).
Expand 1 Items
Anti-HBV D pre-S1/S2 Protein Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
Hepatitis B Virus (HBV) infection induces a disease state characterised by liver damage, inflammation and viral persistence. Infection also increases the risk of hepatocellular carcinoma. HBV belongs to the Hepadnaviridae family of viruses. Its genome consists of partially double stranded circular DNA. The DNA is enclosed in a nucleocapsid, or core antigen (HBcAg), which is surrounded by a spherical envelope (surface antigen or HBsAg). The core antigen shares its sequences with the e antigen (HBeAg) but no cross reactivity between the two proteins has been observed. The HBV genome also encodes a DNA polymerase that also acts as a reverse transcriptase. Hepatitis B infection is normally diagnosed from serological tests that detect HBsAg but as the disease progresses this antigen may no longer be present in the blood and tests for HBcAg are used. If HBsAg can be detected in the blood for longer than six months, chronic hepatitis B is diagnosed. The antigenic determinant of the protein moiety of the HBsAg determines specific characteristics of different serotypes and provides the basis of immunodetection. HBsAg has antigenic heterogeneity, specifically, two pairs of sub specific determinants, d/y and w/r allow the following combinations: adw, ayw, adr, ayr.
Expand 1 Items
Anti-FLT4 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFC and VEGFD, and plays an essential role in adult lymphangiogenesis and in the development of the vascular network and the cardiovascular system during embryonic development. Promotes proliferation, survival and migration of endothelial cells, and regulates angiogenic sprouting. Signaling by activated FLT4 leads to enhanced production of VEGFC, and to a lesser degree VEGFA, thereby creating a positive feedback loop that enhances FLT4 signaling. Modulates KDR signaling by forming heterodimers. The secreted isoform 3 may function as a decoy receptor for VEGFC and/or VEGFD and play an important role as a negative regulator of VEGFC-mediated lymphangiogenesis and angiogenesis. Binding of vascular growth factors to isoform 1 or isoform 2 leads to the activation of several signaling cascades; isoform 2 seems to be less efficient in signal transduction, because it has a truncated C-terminus and therefore lacks several phosphorylation sites. Mediates activation of the MAPK1/ERK2, MAPK3/ERK1 signaling pathway, of MAPK8 and the JUN signaling pathway, and of the AKT1 signaling pathway. Phosphorylates SHC1. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Promotes phosphorylation of MAPK8 at 'Thr-183' and 'Tyr-185', and of AKT1 at 'Ser-473'.
Expand 1 Items
Anti-ESRRG Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
This gene encodes a member of the estrogen receptor-related receptor (ESRR) family, which belongs to the nuclear hormone receptor superfamily. All members of the ESRR family share an almost identical DNA binding domain, which is composed of two C4-type zinc finger motifs. The ESRR members are orphan nuclear receptors; they bind to the estrogen response element and steroidogenic factor 1 response element, and activate genes controlled by both response elements in the absence of any ligands. The ESRR family is closely related to the estrogen receptor (ER) family. They share target genes, co-regulators and promoters, and by targeting the same set of genes, the ESRRs seem to interfere with the ER-mediated estrogen response in various ways. It has been reported that the family member encoded by this gene functions as a transcriptional activator of DNA cytosine-5-methyltransferases 1 (Dnmt1) expression by direct binding to its response elements in the DNMT1 promoters, modulates cell proliferation and estrogen signaling in breast cancer, and negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation and bone formation. Multiple alternatively spliced transcript variants have been identified, which mainly differ at the 5' end and some of which encode protein isoforms differing in the N-terminal region.
Expand 1 Items
Anti-MAPKAPK5 Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Tumor suppressor serine/threonine-protein kinase involved in mTORC1 signaling and post-transcriptional regulation. Phosphorylates FOXO3, ERK3/MAPK6, ERK4/MAPK4, HSP27/HSPB1, p53/TP53 and RHEB. Acts as a tumor suppressor by mediating Ras-induced senescence and phosphorylating p53/TP53. Involved in post-transcriptional regulation of MYC by mediating phosphorylation of FOXO3: phosphorylation of FOXO3 leads to promote nuclear localization of FOXO3, enabling expression of miR-34b and miR-34c, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent MYC translation. Acts as a negative regulator of mTORC1 signaling by mediating phosphorylation and inhibition of RHEB. Part of the atypical MAPK signaling via its interaction with ERK3/MAPK6 or ERK4/MAPK4: the precise role of the complex formed with ERK3/MAPK6 or ERK4/MAPK4 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPK (ERK3/MAPK6 or ERK4/MAPK4), ERK3/MAPK6 (or ERK4/MAPK4) is phosphorylated and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK3/MAPK6 (or ERK4/MAPK4). Mediates phosphorylation of HSP27/HSPB1 in response to PKA/PRKACA stimulation, inducing F-actin rearrangement.
Expand 1 Items
Anti-MAPKAPK5 Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Tumor suppressor serine/threonine-protein kinase involved in mTORC1 signaling and post-transcriptional regulation. Phosphorylates FOXO3, ERK3/MAPK6, ERK4/MAPK4, HSP27/HSPB1, p53/TP53 and RHEB. Acts as a tumor suppressor by mediating Ras-induced senescence and phosphorylating p53/TP53. Involved in post-transcriptional regulation of MYC by mediating phosphorylation of FOXO3: phosphorylation of FOXO3 leads to promote nuclear localization of FOXO3, enabling expression of miR-34b and miR-34c, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent MYC translation. Acts as a negative regulator of mTORC1 signaling by mediating phosphorylation and inhibition of RHEB. Part of the atypical MAPK signaling via its interaction with ERK3/MAPK6 or ERK4/MAPK4: the precise role of the complex formed with ERK3/MAPK6 or ERK4/MAPK4 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPK (ERK3/MAPK6 or ERK4/MAPK4), ERK3/MAPK6 (or ERK4/MAPK4) is phosphorylated and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK3/MAPK6 (or ERK4/MAPK4). Mediates phosphorylation of HSP27/HSPB1 in response to PKA/PRKACA stimulation, inducing F-actin rearrangement.
Expand 1 Items
Anti-P53 Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seem to have to effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis.
Expand 1 Items
Anti-TNK2 Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
Non-receptor tyrosine-protein and serine/threonine-protein kinase that is implicated in cell spreading and migration, cell survival, cell growth and proliferation. Transduces extracellular signals to cytosolic and nuclear effectors. Phosphorylates AKT1, AR, MCF2, WASL and WWOX. Implicated in trafficking and clathrin-mediated endocytosis through binding to epidermal growth factor receptor (EGFR) and clathrin. Binds to both poly- and mono-ubiquitin and regulates ligand-induced degradation of EGFR, thereby contributing to the accumulation of EGFR at the limiting membrane of early endosomes. Downstream effector of CDC42 which mediates CDC42-dependent cell migration via phosphorylation of BCAR1. May be involved both in adult synaptic function and plasticity and in brain development. Activates AKT1 by phosphorylating it on 'Tyr-176'. Phosphorylates AR on 'Tyr-267' and 'Tyr-363' thereby promoting its recruitment to androgen-responsive enhancers (AREs). Phosphorylates WWOX on 'Tyr-287'. Phosphorylates MCF2, thereby enhancing its activity as a guanine nucleotide exchange factor (GEF) toward Rho family proteins. Contributes to the control of AXL receptor levels. Confers metastatic properties on cancer cells and promotes tumor growth by negatively regulating tumor suppressor such as WWOX and positively regulating pro-survival factors such as AKT1 and AR.
Expand 1 Items
Anti-LYL1 Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
The Lyl1 gene encodes a basic helix–loop–helix transcription factor involved in T-cell acute lymphoblastic leukemia. The expression of Lyl1 is at higher levels in the majority of cases of acute myeloblastic leukemia (AML) or myelodysplastic syndrome when compared to normal bone marrow. Lyl1 is highly expressed in most AML cell lines.Lyl-1, TAL1 and TAL2 are part of a family of basic helix-loop-helix (bHLH) proteins implicated in T cell acute leukemia. TAL1, also designated SCL, is a serine phosphoprotein and basic helix-loop-helix transcription factor known to regulate embryonic hematopoiesis. TAL2 is a protein involved in T cell acute lymphoblastic leukemia through a chromosomal translocation involving TAL2 and T cell receptor ∫ chain genes. TAL2 includes a helix-loop-helix protein dimerization and DNA-binding domain that is homologous to TAL1 and Lyl-1 proto-oncogenes. Lyl-1 (lymphoblastic leukemia-derived sequence 1) is a nuclear protein. Endogenous Lyl-1 exists in complex with E2å proteins. Lyl-1 and E2å protein can form heterodimeric complexes with distinctive DNA-binding properties in hematolymphoid cells. Lyl-1 is involved in a chromosomal aberration which causes a form of T cell acute lymphoblastic leukemia (T-ALL).
Expand 1 Items
Anti-ATF2 Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
ATF2 is a member of the ATF/CREB family of basic region leucine zipper DNA binding proteins that regulates transcription by binding to a consensus cAMP response element (CRE) in the promoter of various viral and cellular genes. Many of these genes are important in cell growth and differentiation, and in stress and immune responses. ATF2 is a nuclear protein that binds DNA as a dimer and can form dimers with members of the ATF/CREB and Jun/Fos families. It is a stronger activator as a heterodimer with cJun than as a homodimer. Several isoforms of ATF2 arise by differential splicing. The stable native full length ATF2 is transcriptionally inactive as a result of an inhibitory direct intramolecular interaction of its carboxy terminal DNA binding domain with the amino terminal transactivation domain. Following dimerization ATF2 becomes a short lived protein that undergoes ubiquitination and proteolysis, seemingly in a protein phosphatase-dependent mechanism. Stimulation of the transcriptional activity of ATF2 occurs following cellular stress induced by several genotoxic agents, inflammatory cytokines, and UV irradiation. This activation requires phosphorylation of two threonine residues in ATF2 by both JNK/SAP kinase and p38 MAP kinase. ATF2 is abundantly expressed in brain.
Expand 1 Items
Anti-PRKAR1 Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. This gene encodes one of the regulatory subunits. This protein was found to be a tissue-specific extinguisher that down-regulates the expression of seven liver genes in hepatoma x fibroblast hybrids. Mutations in this gene cause Carney complex (CNC). This gene can fuse to the RET protooncogene by gene rearrangement and form the thyroid tumor-specific chimeric oncogene known as PTC2. A nonconventional nuclear localization sequence (NLS) has been found for this protein which suggests a role in DNA replication via the protein serving as a nuclear transport protein for the second subunit of the Replication Factor C (RFC40). Three alternatively spliced transcript variants encoding the same protein have been observed. [provided by RefSeq, Jul 2008].
Expand 1 Items
Anti-ALK Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Neuronal orphan receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems and plays an important role in the genesis and differentiation of the nervous system. Transduces signals from ligands at the cell surface, through specific activation of the mitogen-activated protein kinase (MAPK) pathway. Phosphorylates almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif. Following activation by ligand, ALK induces tyrosine phosphorylation of CBL, FRS2, IRS1 and SHC1, as well as of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1. Acts as a receptor for ligands pleiotrophin (PTN), a secreted growth factor, and midkine (MDK), a PTN-related factor, thus participating in PTN and MDK signal transduction. PTN-binding induces MAPK pathway activation, which is important for the anti-apoptotic signaling of PTN and regulation of cell proliferation. MDK-binding induces phosphorylation of the ALK target insulin receptor substrate (IRS1), activates mitogen-activated protein kinases (MAPKs) and PI3-kinase, resulting also in cell proliferation induction. Drives NF-kappa-B activation, probably through IRS1 and the activation of the AKT serine/threonine kinase. Recruitment of IRS1 to activated ALK and the activation of NF-kappa-B are essential for the autocrine growth and survival signaling of MDK.
Expand 1 Items
Anti-SMAD2 Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Smad2 is a 58 kDa member of a family of proteins involved in cell proliferation, differentiation and development. The Smad family is divided into three subclasses: receptor-regulated Smad's, activin/TGF alpha receptor-regulated (Smad2 and 3) or BMP receptor regulated (Smad1, 5, and 8); the common partner, (Smad4) that functions via its interaction to the various Smad's; and the inhibitory Smad's, (Smad6 and Smad7). Smad2 consists of two highly conserved domains, the N terminal Mad homology (MH1) and the C-terminal Mad homology 2 (MH2) domains. The MH1 domain binds DNA and regulates nuclear import and transcription while the MH2 domain conserved among all the Smad's regulates Smad2 oligomerization and binding to cytoplasmic adaptors and transcription factors. Activated Smad2 associates with Smad4 and translocates as a complex into the nucleus, allowing its binding to DNA and transcription factors. This translocation of Smad2 (as well as Smad3) into the nucleus is a central event in TGF beta signaling. Phosphorylation of threonine 8 in the calmodulin binding region of the MH1 domain by extracellular signal regulated kinase 1(ERK 1) enhances Smad2 transcriptional activity, which is negatively regulated by calmodulin. The regulation of Smad2 phosphorylation on threonine 8 by ERK 1 and calmodulin is critical for Smad2 mediated signaling.
Expand 1 Items
Anti-DDX20 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by loss of motor neurons in the spinal cord. SMA is caused by deletion or loss-of-function mutations in the SMN (survival of motor neuron) gene. Gemin3, also known as DP103, DDX20, DEAD-box protein DP130 and DEAD/H box 20, is a protein product of human chromosome 1p13.2. It associates directly with SMN and is a part of the SMN complex containing Gemin2, Gemin4, Gemin5 and Gemin6, as well as several spliceosomal snRNP proteins. The SMN complex plays an essential role in spliceosomal snRNP assembly in the cytoplasm and is required for pre-mRNA splicing of the nucleus. It is found in both the cytoplasm and the nucleus. The nuclear form is concentrated in subnuclear bodies called gems (for Gemini of the coiled bodies). Gemin3 also interacts with SmB, SmD2 and SmD3. It contains the conserved motif Asp-Glu-Ala-Asp (DEAD) characteristic of DEAD-box proteins. Gemin3 is a putative RNA helicase and shows ATPase activity. It is expressed in B and T cell neuroblastoma-derived cell lines, malignant melanoma tumor, normal testis and is expressed in low levels in colon, skeletal muscle, liver, kidney and lung.
Expand 1 Items
Anti-PNPT1 Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
RNA-binding protein implicated in numerous RNA metabolic processes. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'-to-5' direction. Mitochondrial intermembrane factor with RNA-processing exoribonulease activity. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. Required for correct processing and polyadenylation of mitochondrial mRNAs. Plays a role as a cytoplasmic RNA import factor that mediates the translocation of small RNA components, like the 5S RNA, the RNA subunit of ribonuclease P and the mitochondrial RNA-processing (MRP) RNA, into the mitochondrial matrix. Plays a role in mitochondrial morphogenesis and respiration; regulates the expression of the electron transport chain (ETC) components at the mRNA and protein levels. In the cytoplasm, shows a 3'-to-5' exoribonuclease mediating mRNA degradation activity; degrades c-myc mRNA upon treatment with IFNB1/IFN-beta, resulting in a growth arrest in melanoma cells. Regulates the stability of specific mature miRNAs in melanoma cells; specifically and selectively degrades miR-221, preferentially. Plays also a role in RNA cell surveillance by cleaning up oxidized RNAs. Binds to the RNA subunit of ribonuclease P, MRP RNA and miR-221 microRNA.
Expand 1 Items
Anti-GMNN Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by loss of motor neurons in the spinal cord. SMA is caused by deletion or loss-of-function mutations of SMN (survival of motor neuron) gene. SMN, also known as Gemin1, SMN1, SMNT and BCD541, exists as four isoforms produced by alternative splicing. SMN is oligomeric and forms a complex with Gemin2 (formerly SIP1), Gemin3 (a DEAD box RNA helicase), Gemin4, Gemin5 and Gemin6, as well as several spliceosomal snRNP proteins. The SMN complex plays an essential role in splicesomal snRNP assembly in the cytoplasm and is required for pre-mRNA splicing of the nucleus. The SMN complex is found in both the cytoplasm and the nucleus. The nuclear form is concentrated in subnuclear bodies called gems (gemini of the coiled bodies). Cytoplasmic SMN interacts with spliceosomal Sm proteins and facilitates their assembly onto U snRNAs, and nuclear SMN mediates recycling of pre-mRNA splicing factors. Nearly identical telomeric and centromeric forms of SMN encode the same protein; however, only mutations in the telomeric form are associated with the disease-state SMA. SMN is expresed in a wide variety of tissues including brain, kidney, liver, spinal cord and moderately in skeletal and cardiac muscle.