204115 Results for: "Amberlite\u00AE+HPR4200+(Cl)&pageNo=50"
Anti-RET Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
Receptor tyrosine-protein kinase involved in numerous cellular mechanisms including cell proliferation, neuronal navigation, cell migration, and cell differentiation upon binding with glial cell derived neurotrophic factor family ligands. Phosphorylates PTK2/FAK1. Regulates both cell death/survival balance and positional information. Required for the molecular mechanisms orchestration during intestine organogenesis; involved in the development of enteric nervous system and renal organogenesis during embryonic life, and promotes the formation of Peyer's patch-like structures, a major component of the gut-associated lymphoid tissue. Modulates cell adhesion via its cleavage by caspase in sympathetic neurons and mediates cell migration in an integrin (e.g. ITGB1 and ITGB3)-dependent manner. Involved in the development of the neural crest. Active in the absence of ligand, triggering apoptosis through a mechanism that requires receptor intracellular caspase cleavage. Acts as a dependence receptor; in the presence of the ligand GDNF in somatotrophs (within pituitary), promotes survival and down regulates growth hormone (GH) production, but triggers apoptosis in absence of GDNF. Regulates nociceptor survival and size. Triggers the differentiation of rapidly adapting (RA) mechanoreceptors. Mediator of several diseases such as neuroendocrine cancers; these diseases are characterized by aberrant integrins-regulated cell migration.
Expand 1 Items
Anti-ALK Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Neuronal orphan receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems and plays an important role in the genesis and differentiation of the nervous system. Transduces signals from ligands at the cell surface, through specific activation of the mitogen-activated protein kinase (MAPK) pathway. Phosphorylates almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif. Following activation by ligand, ALK induces tyrosine phosphorylation of CBL, FRS2, IRS1 and SHC1, as well as of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1. Acts as a receptor for ligands pleiotrophin (PTN), a secreted growth factor, and midkine (MDK), a PTN-related factor, thus participating in PTN and MDK signal transduction. PTN-binding induces MAPK pathway activation, which is important for the anti-apoptotic signaling of PTN and regulation of cell proliferation. MDK-binding induces phosphorylation of the ALK target insulin receptor substrate (IRS1), activates mitogen-activated protein kinases (MAPKs) and PI3-kinase, resulting also in cell proliferation induction. Drives NF-kappa-B activation, probably through IRS1 and the activation of the AKT serine/threonine kinase. Recruitment of IRS1 to activated ALK and the activation of NF-kappa-B are essential for the autocrine growth and survival signaling of MDK.
Expand 1 Items
Anti-RET Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Receptor tyrosine-protein kinase involved in numerous cellular mechanisms including cell proliferation, neuronal navigation, cell migration, and cell differentiation upon binding with glial cell derived neurotrophic factor family ligands. Phosphorylates PTK2/FAK1. Regulates both cell death/survival balance and positional information. Required for the molecular mechanisms orchestration during intestine organogenesis; involved in the development of enteric nervous system and renal organogenesis during embryonic life, and promotes the formation of Peyer's patch-like structures, a major component of the gut-associated lymphoid tissue. Modulates cell adhesion via its cleavage by caspase in sympathetic neurons and mediates cell migration in an integrin (e.g. ITGB1 and ITGB3)-dependent manner. Involved in the development of the neural crest. Active in the absence of ligand, triggering apoptosis through a mechanism that requires receptor intracellular caspase cleavage. Acts as a dependence receptor; in the presence of the ligand GDNF in somatotrophs (within pituitary), promotes survival and down regulates growth hormone (GH) production, but triggers apoptosis in absence of GDNF. Regulates nociceptor survival and size. Triggers the differentiation of rapidly adapting (RA) mechanoreceptors. Mediator of several diseases such as neuroendocrine cancers; these diseases are characterized by aberrant integrins-regulated cell migration.
Expand 1 Items
Anti-DPYD Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterized by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
Expand 1 Items
Anti-DPYD Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Dihydropyrimidine dehydrogenase (DPYD) catalyzes the first rate-limiting step of the NADPH-dependent catabolism of uracil and thymine to dihydrouracil and dihydrothymine; thus, a deficiency of DPYD leads to an accumulation of uracil and thymine. Abnormal concentrations of these metabolites in bodily fluids may be the cause of neurological disease and a contraindication for treatment of cancer patients with certain pyrimidine analogs. DPYD also catalyzes the anticancer agent 5-fluorouracil (5-FU) pathway and is involved in the efficacy and toxicity of 5-FU. Variations in DPYD concentration may arise from alterations at the transcriptional level of the dihydropyrimidine dehydrogenase gene. Specifically, hypermethylation of the DPYD promoter downregulates dihydropyrimidine dehydrogenase expression. Deficient DPYD alleles may constitute a risk factor for severe toxicity following treatment with 5-FU.Involvement in disease:Defects in DPYD are the cause of dihydropyrimidine dehydrogenase deficiency (DPYD deficiency) ; also known as hereditary thymine-uraciluria or familial pyrimidinemia. DPYD deficiency is a disease characterized by persistent urinary excretion of excessive amounts of uracil, thymine and 5-hydroxymethyluracil. Patients suffering from this disease show a severe reaction to the anticancer drug 5-fluorouracil. This reaction includes stomatitis, Leukopenia, thrombocytopenia, hair loss, diarrhea, fever, marked weight loss, cerebellar ataxia, and neurologic symptoms, progressing to semicoma.
Expand 1 Items
Anti-DDX20 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by loss of motor neurons in the spinal cord. SMA is caused by deletion or loss-of-function mutations in the SMN (survival of motor neuron) gene. Gemin3, also known as DP103, DDX20, DEAD-box protein DP130 and DEAD/H box 20, is a protein product of human chromosome 1p13.2. It associates directly with SMN and is a part of the SMN complex containing Gemin2, Gemin4, Gemin5 and Gemin6, as well as several spliceosomal snRNP proteins. The SMN complex plays an essential role in spliceosomal snRNP assembly in the cytoplasm and is required for pre-mRNA splicing of the nucleus. It is found in both the cytoplasm and the nucleus. The nuclear form is concentrated in subnuclear bodies called gems (for Gemini of the coiled bodies). Gemin3 also interacts with SmB, SmD2 and SmD3. It contains the conserved motif Asp-Glu-Ala-Asp (DEAD) characteristic of DEAD-box proteins. Gemin3 is a putative RNA helicase and shows ATPase activity. It is expressed in B and T cell neuroblastoma-derived cell lines, malignant melanoma tumor, normal testis and is expressed in low levels in colon, skeletal muscle, liver, kidney and lung.
Expand 1 Items
Anti-PAFAH1B1 Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
Required for proper activation of Rho GTPases and actin polymerization at the leading edge of locomoting cerebellar neurons and postmigratory hippocampal neurons in response to calcium influx triggered via NMDA receptors. Non-catalytic subunit of an acetylhydrolase complex which inactivates platelet-activating factor (PAF) by removing the acetyl group at the SN-2 position (By similarity). Positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus end. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the peripheral transport of microtubule fragments and the coupling of the nucleus and centrosome. Required during brain development for the proliferation of neuronal precursors and the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Neuronal migration involves a process called nucleokinesis, whereby migrating cells extend an anterior process into which the nucleus subsequently translocates. During nucleokinesis dynein at the nuclear surface may translocate the nucleus towards the centrosome by exerting force on centrosomal microtubules. May also play a role in other forms of cell locomotion including the migration of fibroblasts during wound healing.
Expand 1 Items
Anti-PPP1R9A Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Brain-specific neurabin I (neural tissue-specific F-actin binding protein I) is highly concentrated in the synapse of developed neurons; it localizes in the growth cone lamellipodia during neuronal development (1). Suppression of endogenous neurabin in rat hippocampal neurons inhibits neurite formation (1). Neurabin I recruits active PP1 via a PP1-docking sequence; mutation of the PP1-binding motif halts filopodia and restores stress fibers in neurabin I-expressing cells (2,3). Neurabin II (Spinophilin) is ubiquitously expressed but is abundantly expressed in brain (4). Neurabin II localizes to neuronal dentritic spines, which are the specialized protrusions from dendritic shafts that receive most of the excitatory input in the CNS (5). Neurabin II may regulate dendritic spine properties as neurabin II(-) mice have increased spine density during development in vitro and exhibit altered filopodial formation in cultured cells (5). Neurabin may also play a role in glutamatergic transmission as Neurabin II(-) mice exhibit reduced long-term depression and resistance to kainate-induced seizures and neronal apoptosis (5). Neurabin II complexes with the catalytic subunit of protein phosphatase-1 (PP1) in vitro thus modulating the activity of PP1 (4).
Expand 1 Items
Anti-RET Rabbit Polyclonal Antibody
Supplier: Bioss
Receptor tyrosine-protein kinase involved in numerous cellular mechanisms including cell proliferation, neuronal navigation, cell migration, and cell differentiation upon binding with glial cell derived neurotrophic factor family ligands. Phosphorylates PTK2/FAK1. Regulates both cell death/survival balance and positional information. Required for the molecular mechanisms orchestration during intestine organogenesis; involved in the development of enteric nervous system and renal organogenesis during embryonic life, and promotes the formation of Peyer's patch-like structures, a major component of the gut-associated lymphoid tissue. Modulates cell adhesion via its cleavage by caspase in sympathetic neurons and mediates cell migration in an integrin (e.g. ITGB1 and ITGB3)-dependent manner. Involved in the development of the neural crest. Active in the absence of ligand, triggering apoptosis through a mechanism that requires receptor intracellular caspase cleavage. Acts as a dependence receptor; in the presence of the ligand GDNF in somatotrophs (within pituitary), promotes survival and down regulates growth hormone (GH) production, but triggers apoptosis in absence of GDNF. Regulates nociceptor survival and size. Triggers the differentiation of rapidly adapting (RA) mechanoreceptors. Mediator of several diseases such as neuroendocrine cancers; these diseases are characterized by aberrant integrins-regulated cell migration.
Expand 1 Items
Anti-PCSK9 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments (PubMed:18039658). Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation (PubMed:18799458, PubMed:17461796, PubMed:18197702, PubMed:22074827). Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway (PubMed:18660751). Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways.
Expand 1 Items
Anti-HBV D pre-S1/S2 Protein Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Hepatitis B Virus (HBV) infection induces a disease state characterised by liver damage, inflammation and viral persistence. Infection also increases the risk of hepatocellular carcinoma. HBV belongs to the Hepadnaviridae family of viruses. Its genome consists of partially double stranded circular DNA. The DNA is enclosed in a nucleocapsid, or core antigen (HBcAg), which is surrounded by a spherical envelope (surface antigen or HBsAg). The core antigen shares its sequences with the e antigen (HBeAg) but no cross reactivity between the two proteins has been observed. The HBV genome also encodes a DNA polymerase that also acts as a reverse transcriptase. Hepatitis B infection is normally diagnosed from serological tests that detect HBsAg but as the disease progresses this antigen may no longer be present in the blood and tests for HBcAg are used. If HBsAg can be detected in the blood for longer than six months, chronic hepatitis B is diagnosed. The antigenic determinant of the protein moiety of the HBsAg determines specific characteristics of different serotypes and provides the basis of immunodetection. HBsAg has antigenic heterogeneity, specifically, two pairs of sub specific determinants, d/y and w/r allow the following combinations: adw, ayw, adr, ayr.
Expand 1 Items
Anti-INSR Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
The human insulin receptor is a heterotetrameric membrane glycoprotein consisting of disulfide linked subunits in a beta-alpha-alpha-beta configuration. The beta subunit (95 kDa) possesses a single transmembrane domain, whereas the alpha subunit (135 kDa) is completely extracellular. The insulin receptor exhibits receptor tyrosine kinase (RTK) activity. RTKs are single pass transmembrane receptors that possess intrinsic cytoplasmic enzymatic activity, catalyzing the transfer of the gamma phosphate of ATP to tyrosine residues in protein substrates. RTKs are essential components of signal transduction pathways that affect cell proliferation, differentiation, migration and metabolism.Included in this large protein family are the insulin receptor and the receptors for growth factors such as epidermal growth factor, fibroblast growth factor and vascular endothelial growth factor. Receptor activation occurs through ligand binding, which facilitates receptor dimerization and autophosphorylation of specific tyrosine residues in the cytoplasmic portion. The interaction of insulin with the alpha subunit of the insulin receptor activates the protein tyrosine kinase of the beta subunit, which then undergoes an autophosphorylation that increases its tyrosine kinase activity. Three adapter proteins, IRS1, IRS2 and Shc, become phosphorylated on tyrosine residues following insulin receptor activation. These three phosphorylated proteins then interact with SH2 domain containing signaling proteins.
Expand 1 Items
Anti-ERBB3 Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
ErbB3 is a member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. ErbB3 is a membrane-bound protein which has a neuregulin binding domain but not an active kinase domain. It can therefore bind this ligand but cannot convey a signal into the cell via protein phosphorylation. However it does form heterodimers with other EGF receptor family members which do have kinase activity. Heterodimerization leads to the activation of pathways which lead to cell proliferation or differentiation. Amplification of this gene and/or overexpression of its protein have been reported in numerous cancers including prostate, bladder and breast tumors. Alternate transcriptional splice variants encoding different isoforms have been characterized. Isoform 2 lacks the intermembrane region and is secreted outside the cell. This form acts to modulate the activity of the membrane-bound form. Additional splice variants have also been reported but they have not been thoroughly characterized. Defects in ERBB3 are the cause of lethal congenital contracture syndrome type 2 (LCCS2); also called Israeli Bedouin multiple contracture syndrome type A. LCCS2 is an autosomal recessive neurogenic form of a neonatally lethal arthrogryposis that is associated with atrophy of the anterior horn of the spinal cord.
Expand 1 Items
Anti-MAP2K4 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K7/MKK7, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The phosphorylation of the Thr residue by MAP2K7/MKK7 seems to be the prerequisite for JNK activation at least in response to proinflammatory cytokines, while other stimuli activate both MAP2K4/MKK4 and MAP2K7/MKK7 which synergistically phosphorylate JNKs. MAP2K4 is required for maintaining peripheral lymphoid homeostasis. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Whereas MAP2K7/MKK7 exclusively activates JNKs, MAP2K4/MKK4 additionally activates the p38 MAPKs MAPK11, MAPK12, MAPK13 and MAPK14.
Expand 1 Items
Anti-P53 Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seem to have to effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis.
Expand 1 Items
Anti-MUSK Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Receptor tyrosine kinase which plays a central role in the formation and the maintenance of the neuromuscular junction (NMJ), the synapse between the motor neuron and the skeletal muscle (PubMed:25537362). Recruitment of AGRIN by LRP4 to the MUSK signaling complex induces phosphorylation and activation of MUSK, the kinase of the complex. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. May regulate AChR phosphorylation and clustering through activation of ABL1 and Src family kinases which in turn regulate MUSK. DVL1 and PAK1 that form a ternary complex with MUSK are also important for MUSK-dependent regulation of AChR clustering. May positively regulate Rho family GTPases through FNTA. Mediates the phosphorylation of FNTA which promotes prenylation, recruitment to membranes and activation of RAC1 a regulator of the actin cytoskeleton and of gene expression. Other effectors of the MUSK signaling include DNAJA3 which functions downstream of MUSK. May also play a role within the central nervous system by mediating cholinergic responses, synaptic plasticity and memory formation (By similarity).
Expand 1 Items
Life science nitrile gloves, PUREZERO® MARIN-XTRA®
Supplier: Halyard
Extended length PUREZERO® life science nitrile gloves deliver on all fronts. They are tested against 57 chemicals, with 3 levels of colour-coded protection offering increasing thickness designed for life science applications. The SAFESKIN® manufacturing facility uses 92% renewable energy, dispensers are made with up to 85% recycled materials, and cases are made with up to 99% recycled pulp.
Expand 5 Items
Human recombinant VEGFA (from E. coli)
Supplier: ProSci Inc.
Human VEGF121, also known as Vascular endothelial growth factor A, VEGFA, Vascular permeability factor, VPF and VEGF, is a homodimeric, heparin-binding glycoprotein which belongs to the platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) family. VEGF-A is a glycosylated mitogen that specifically acts on endothelial cells and has various effects, including mediating increased vascular permeability, inducing angiogenesis, vasculogenesis, permeabilization of blood vessels and endothelial cell growth, increasing microvascular permeability, promoting cell migration and inhibiting apoptosis. Alternatively spliced transcript variants of VEGF-A encod either secreted or cell-associated isoforms. The lymphangiogenesis may be promoted by upregulation of VEGF121, which may in turn act in part via induction of VEGF-C. It binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145. Isoform VEGF165B binds to KDR but does not activate downstream signaling pathways, does not activate angiogenesis and inhibits tumor growth.
Expand 1 Items
Anti-NSUN2 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Maturation of cytoplasmic tRNAs includes splicing of introns, which are located 1 nucleotide 3-prime from the anticodon in all intron-containing tRNA genes. In tRNA-leu (CAA), the first position of the anticodon, C34, is converted to 5-methylcytosine, a modification necessary to stabilize the anticodon-codon pairing and correctly translate the mRNA. NSUN2 is a methyltransferase that catalyzes the intron-dependent formation of 5-methylcytosine at C34 of tRNA-leu (CAA).Maturation of cytoplasmic tRNAs includes splicing of introns, which are located 1 nucleotide 3-prime from the anticodon in all intron-containing tRNA genes. In tRNA-leu (CAA), the first position of the anticodon, C34, is converted to 5-methylcytosine, a modification necessary to stabilize the anticodon-codon pairing and correctly translate the mRNA. NSUN2 encodes a methyltransferase that catalyzes the intron-dependent formation of 5-methylcytosine at C34 of tRNA-leu (CAA) (Brzezicha et al., 2006 [PubMed 17071714]).
Expand 1 Items
Anti-TADA2A Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Many DNA-binding transcriptional activator proteins enhance the initiation rate of RNA polymerase II-mediated gene transcription by interacting functionally with the general transcription machinery bound at the basal promoter. Adaptor proteins are usually required for this activation, possibly to acetylate and destabilize nucleosomes, thereby relieving chromatin constraints at the promoter. TADA2L is a transcriptional activator adaptor and has been found to be part of the PCAF histone acetylase complex.Many DNA-binding transcriptional activator proteins enhance the initiation rate of RNA polymerase II-mediated gene transcription by interacting functionally with the general transcription machinery bound at the basal promoter. Adaptor proteins are usually required for this activation, possibly to acetylate and destabilize nucleosomes, thereby relieving chromatin constraints at the promoter. The protein encoded by this gene is a transcriptional activator adaptor and has been found to be part of the PCAF histone acetylase complex. Two transcript variants encoding different isoforms have been identified for this gene.
Expand 1 Items
Anti-GATM Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
GATM is a mitochondrial enzyme that belongs to the amidinotransferase family. This enzyme is involved in creatine biosynthesis, whereby it catalyzes the transfer of a guanido group from L-arginine to glycine, resulting in guanidinoacetic acid, the immediate precursor of creatine. Mutations in this gene cause arginine:glycine amidinotransferase deficiency, an inborn error of creatine synthesis characterized by mental retardation, language impairment, and behavioral disorders.This gene encodes a mitochondrial enzyme that belongs to the amidinotransferase family. This enzyme is involved in creatine biosynthesis, whereby it catalyzes the transfer of a guanido group from L-arginine to glycine, resulting in guanidinoacetic acid, the immediate precursor of creatine. Mutations in this gene cause arginine:glycine amidinotransferase deficiency, an inborn error of creatine synthesis characterized by mental retardation, language impairment, and behavioral disorders. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.
Expand 1 Items
Anti-MAP4K2 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
MAP4K2 is a member of the serine/threonine protein kinase family. Although this kinase is found in many tissues, its expression in lymphoid follicles is restricted to the cells of germinal centre, where it may participate in B-cell differentiation. This kinase can be activated by TNF-alpha, and has been shown to specifically activate MAP kinases. This kinase is also found to interact with TNF receptor-associated factor 2 (TRAF2), which is involved in the activation of MAP3K1/MEKK1.The protein encoded by this gene is a member of the serine/threonine protein kinase family. Although this kinase is found in many tissues, its expression in lymphoid follicles is restricted to the cells of germinal centre, where it may participate in B-cell differentiation. This kinase can be activated by TNF-alpha, and has been shown to specifically activate MAP kinases. This kinase is also found to interact with TNF receptor-associated factor 2 (TRAF2), which is involved in the activation of MAP3K1/MEKK1.
Expand 1 Items
Anti-HOXA2 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
In vertebrates, the genes encoding the class of transcription factors called homeobox genes are found in clusters named A, B, C, and D on four separate chromosomes. Expression of these proteins is spatially and temporally regulated during embryonic development. HOXA2 gene is part of the A cluster on chromosome 7. This protein is a DNA-binding transcription factor which may regulate gene expression, morphogenesis, and differentiation. It may be involved in the placement of hindbrain segments in the proper location along the anterior-posterior axis during development.In vertebrates, the genes encoding the class of transcription factors called homeobox genes are found in clusters named A, B, C, and D on four separate chromosomes. Expression of these proteins is spatially and temporally regulated during embryonic development. This gene is part of the A cluster on chromosome 7 and encodes a DNA-binding transcription factor which may regulate gene expression, morphogenesis, and differentiation. The encoded protein may be involved in the placement of hindbrain segments in the proper location along the anterior-posterior axis during development.
Expand 1 Items
Anti-RORB Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
RORB is a member of the NR1 subfamily of nuclear hormone receptors. It is a DNA-binding protein that can bind as a monomer or as a homodimer to hormone response elements upstream of several genes to enhance the expression of those genes. The specific functions of this protein are not known, but it has been shown to interact with NM23-2, a nucleoside diphosphate kinase involved in organogenesis and differentiation. The protein encoded by this gene is a member of the NR1 subfamily of nuclear hormone receptors. It is a DNA-binding protein that can bind as a monomer or as a homodimer to hormone response elements upstream of several genes to enhance the expression of those genes. The specific functions of this protein are not known, but it has been shown to interact with NM23-2, a nucleoside diphosphate kinase involved in organogenesis and differentiation. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.
Expand 1 Items
Anti-DLX1 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
DLX1 is a member of a homeobox transcription factor family. It is localized to the nucleus where it may function as a transcriptional regulator of signals from multiple TGF-{beta} superfamily members. DLX1 may play a role in the control of craniofacial patterning and the differentiation and survival of inhibitory neurons in the forebrain.This gene encodes a member of a homeobox transcription factor gene family similiar to the Drosophila distal-less gene. The encoded protein is localized to the nucleus where it may function as a transcriptional regulator of signals from multiple TGF-{beta} superfamily members. The encoded protein may play a role in the control of craniofacial patterning and the differentiation and survival of inhibitory neurons in the forebrain. This gene is located in a tail-to-tail configuration with another member of the family on the long arm of chromosome 2. Alternatively spliced transcript variants encoding different isoforms have been described.
Expand 1 Items
Anti-SP3 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
SP3 is a transcriptional factor that can act as an activator or repressor, probably in a isoform-specific manner. SP3 binds to GT and GC boxes promoters elements.This gene belongs to a family of Sp1 related genes that encode transcription factors that regulate transcription by binding to consensus GC- and GT-box regulatory elements in target genes. This protein contains a zinc finger DNA-binding domain and several transactivation domains, and has been reported to function as a bifunctional transcription factor that either stimulates or represses the transcription of numerous genes. Transcript variants encoding different isoforms have been described for this gene, and one has been reported to initiate translation from a non-AUG (AUA) start codon. Additional isoforms, resulting from the use of alternate downstream translation initiation sites, have also been noted.
Expand 1 Items
CryoMed™ with OPC UA, General Purpose
Supplier: Thermo Fisher Scientific
For customers in cell and gene therapy and vaccine production, the CryoMed with OPC UA provides precise, repeatable freezing results that protect samples from intracellular freezing. The CryoMed features OPC UA serial communication (ethernet) capabilities, comes standard factory certifications, provides enhanced data traceability via a touch screen user interface and offers customizable freezing profiles while supporting 21 CFR part 11 and GMP needs.
Expand 6 Items
Anti-PCDHGA1 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
This gene is a member of the protocadherin gamma gene cluster, one of three related clusters tandemly linked on chromosome five. These gene clusters have an immunoglobulin-like organization, suggesting that a novel mechanism may be involved in their regulation and expression. The gamma gene cluster includes 22 genes divided into 3 subfamilies. Subfamily A contains 12 genes, subfamily B contains 7 genes and 2 pseudogenes, and the more distantly related subfamily C contains 3 genes. The tandem array of 22 large, variable region exons are followed by a constant region, containing 3 exons shared by all genes in the cluster. Each variable region exon encodes the extracellular region, which includes 6 cadherin ectodomains and a transmembrane region. The constant region exons encode the common cytoplasmic region. These neural cadherin-like cell adhesion proteins most likely play a critical role in the establishment and function of specific cell-cell connections in the brain. Alternative splicing has been described for the gamma cluster genes.
Expand 1 Items
Anti-ASPH Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
This gene is thought to play an important role in calcium homeostasis. The gene is expressed from two promoters and undergoes extensive alternative splicing. The encoded set of proteins share varying amounts of overlap near their N-termini but have substantial variations in their C-terminal domains resulting in distinct functional properties. The longest isoforms (a and f) include a C-terminal Aspartyl/Asparaginyl beta-hydroxylase domain that hydroxylates aspartic acid or asparagine residues in the epidermal growth factor (EGF)-like domains of some proteins, including protein C, coagulation factors VII, IX, and X, and the complement factors C1R and C1S. Other isoforms differ primarily in the C-terminal sequence and lack the hydroxylase domain, and some have been localized to the endoplasmic and sarcoplasmic reticulum. Some of these isoforms are found in complexes with calsequestrin, triadin, and the ryanodine receptor, and have been shown to regulate calcium release from the sarcoplasmic reticulum. Some isoforms have been implicated in metastasis.
Expand 1 Items
Anti-SUMO4 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
SUMO4 is a member of the SUMO gene family. This family of small ubiquitin-related modifiers covalently modify target lysines in proteins and control the target proteins' subcellular localization, stability, or activity. Upon oxidative stress, SUMO4 conjugates to various anti-oxidant enzymes, chaperones, and stress defense proteins. This protein may also conjugate to NFKBIA, TFAP2A and FOS, negatively regulating their transcriptional activity, and to NR3C1, positively regulating its transcriptional activity. Covalent attachment to SUMO4 substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I. In contrast to SUMO1, SUMO2 and SUMO3, SUMO4 seems to be insensitive to sentrin-specific proteases due to the presence of Pro-90. This may impair processing to mature form and conjugation to substrates. SUMO4 is located in the cytoplasm and specifically modifies IKBA, leading to negative regulation of NF-kappa-B-dependent transcription of the IL12B gene. The M55V substitution has been associated with type I diabetes.