Order Entry
Italy
ContactUsLinkComponent
1817 results for "Magnesio+citrato+nonaidrato&amp"

1817 Results for: "Magnesio+citrato+nonaidrato&amp"

Sort By

Anti-ADGRG7 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

G protein-coupled receptors (GPCRs), also designated seven transmembrane (7TM) receptors and heptahelical receptors, are a protein family which interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers such as diacylglycerol, cyclic AMP, inositol phosphates, and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. G protein receptor 128 (GPR128), a member of the secretin family of GCPRs with a GPS domain in its N-terminal domain, may mediate signaling processes to the interior of the cell via activation of G proteins. GPR128 represents an allopeptide which may be involved in T cell mediated transplant rejection as it is able to stimulate 2.102 T cells.

Expand 1 Items
Loading...

Human recombinant Inositol Monophosphatase 2 (from E. coli)

Supplier: ProSci Inc.

Inositol monophosphatase 2, also known as Inositol-1(or 4)-monophosphatase 2, Myo-inositol monophosphatase A2 and IMPA2, is an enzyme which belongs to the inositol monophosphatase family. IMPA2 catalyses the dephosphoylration of inositol monophosphate with cofactor Magnesium and Inhibited by high Li+ and restricted Mg2+ concentrations. IMPA2 plays an important role in phosphatidylinositol signaling. IMPA2 can use the myo-inositol monophosphates, scylloinositol 1,4-diphosphate, glucose-1-phosphate, beta-glycerophosphate, and 2'-AMP as substrates. IMPA2 is a pharmacological target for lithium Li(+) action in brain, it is considered to have a role in schizophrenia and bipolar disorder.

Expand 1 Items
Loading...

Human recombinant Inositol Monophosphatase 1 (from E. coli)

Supplier: ProSci Inc.

Inositol Monophosphatase 1 (IMPA1) belongs to the inositol monophosphatase family. IMPA1 is responsible for the provision of inositol required for synthesis of phosphatidylinositol and polyphosphoinositides, IMPA1 can use myo-inositol-1,3-diphosphate, myo-inositol-1,4-diphosphate, scyllo-inositol-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-1-phosphate, beta-glycerophosphate, and 2-AMP as substrates. IMPA1 has been implicated as the pharmacological target for lithium action in brain. IMPA1 shows magnesium-dependent phosphatase activity and is inhibited by therapeutic concentrations of lithium. In addition, IMPA1 plays a improtant role in intracellular signal transduction.

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit may be a positive regulator of AMPK activity. The myristoylation and phosphorylation of this subunit have been shown to affect the enzyme activity and cellular localization of AMPK. This subunit may also serve as an adaptor molecule mediating the association of the AMPK complex. [provided by RefSeq, Jul 2008].

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-GPRIN2 Rabbit Polyclonal Antibody

Supplier: Bioss

G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/actions, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. GRIN2 (G protein-regulated inducer of neurite outgrowth 2), also known as GPRIN2, is a 458 amino acid protein that is expressed in cerebellum and is thought to play a role in neurite outgrowth. GRIN2 interacts with activated G?oand G?, and is encoded by a gene that maps to human chromosome 10q11.22.

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-GPRIN3 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

May be involved in neurite outgrowth.G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/action, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling, and are involved in many pathological conditions. GRIN3 (G protein-regulated inducer of neurite outgrowth 3), also known as GPRIN3, is a 776 amino acid protein that contains a C-terminal region which shares a high homology with GRIN2 and GRIN1, and may function in neurite outgrowth.

Expand 1 Items
Loading...

Anti-GPRIN3 Rabbit Polyclonal Antibody (Alexa Fluor® 750)

Supplier: Bioss

May be involved in neurite outgrowth.G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/action, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesise intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling, and are involved in many pathological conditions. GRIN3 (G protein-regulated inducer of neurite outgrowth 3), also known as GPRIN3, is a 776 amino acid protein that contains a C-terminal region which shares a high homology with GRIN2 and GRIN1, and may function in neurite outgrowth.

Expand 1 Items
Loading...

Anti-AMPK beta 1 Rabbit Polyclonal Antibody (ALEXA FLUOR® 680)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-GPRIN2 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/actions, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. GRIN2 (G protein-regulated inducer of neurite outgrowth 2), also known as GPRIN2, is a 458 amino acid protein that is expressed in cerebellum and is thought to play a role in neurite outgrowth. GRIN2 interacts with activated G?oand G?, and is encoded by a gene that maps to human chromosome 10q11.22.

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit may be a positive regulator of AMPK activity. The myristoylation and phosphorylation of this subunit have been shown to affect the enzyme activity and cellular localization of AMPK. This subunit may also serve as an adaptor molecule mediating the association of the AMPK complex. [provided by RefSeq, Jul 2008].

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit may be a positive regulator of AMPK activity. The myristoylation and phosphorylation of this subunit have been shown to affect the enzyme activity and cellular localization of AMPK. This subunit may also serve as an adaptor molecule mediating the association of the AMPK complex. [provided by RefSeq, Jul 2008].

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Alexa Fluor® 647)

Supplier: Bioss

The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit may be a positive regulator of AMPK activity. The myristoylation and phosphorylation of this subunit have been shown to affect the enzyme activity and cellular localization of AMPK. This subunit may also serve as an adaptor molecule mediating the association of the AMPK complex. [provided by RefSeq, Jul 2008].

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit may be a positive regulator of AMPK activity. The myristoylation and phosphorylation of this subunit have been shown to affect the enzyme activity and cellular localization of AMPK. This subunit may also serve as an adaptor molecule mediating the association of the AMPK complex. [provided by RefSeq, Jul 2008].

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit may be a positive regulator of AMPK activity. The myristoylation and phosphorylation of this subunit have been shown to affect the enzyme activity and cellular localization of AMPK. This subunit may also serve as an adaptor molecule mediating the association of the AMPK complex. [provided by RefSeq, Jul 2008].

Expand 1 Items
Loading...

Anti-GPRIN2 Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/actions, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. GRIN2 (G protein-regulated inducer of neurite outgrowth 2), also known as GPRIN2, is a 458 amino acid protein that is expressed in cerebellum and is thought to play a role in neurite outgrowth. GRIN2 interacts with activated G?oand G?, and is encoded by a gene that maps to human chromosome 10q11.22.

Expand 1 Items
Loading...

Anti-GPRIN2 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/actions, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. GRIN2 (G protein-regulated inducer of neurite outgrowth 2), also known as GPRIN2, is a 458 amino acid protein that is expressed in cerebellum and is thought to play a role in neurite outgrowth. GRIN2 interacts with activated G?oand G?, and is encoded by a gene that maps to human chromosome 10q11.22.

Expand 1 Items
Loading...

Anti-GPRIN2 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/actions, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. GRIN2 (G protein-regulated inducer of neurite outgrowth 2), also known as GPRIN2, is a 458 amino acid protein that is expressed in cerebellum and is thought to play a role in neurite outgrowth. GRIN2 interacts with activated G?oand G?, and is encoded by a gene that maps to human chromosome 10q11.22.

Expand 1 Items
Loading...

Anti-GPRIN3 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

May be involved in neurite outgrowth.G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/action, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling, and are involved in many pathological conditions. GRIN3 (G protein-regulated inducer of neurite outgrowth 3), also known as GPRIN3, is a 776 amino acid protein that contains a C-terminal region which shares a high homology with GRIN2 and GRIN1, and may function in neurite outgrowth.

Expand 1 Items
Loading...
Sort By
Recommended for You