You searched for: Proteins and Peptides
Proteins are used in routine laboratory procedures such as binding enzymes or coupling peptides to carrier proteins. These kits, mixture solutions, and collagen matrices fulfill a myriad of essential laboratory functions for developing relationships between proteins and other cellular components. The stimulating proteins offered have various amino acid arrangements and functions to fulfill any sample manipulation for testing purposes in any field.
Mouse Recombinant G-CSF
Supplier: STEMCELL Technologies
Granulocyte colony-stimulating factor (G-CSF) is a member of the CSF family of glycoproteins that regulate hematopoietic cell proliferation, differentiation, and function. It is a key cytokine involved in the production of neutrophils and the stimulation of granulocyte colony formation from hematopoietic progenitor cells (Metcalf and Nicola). G-CSF causes a range of effects including a transient reduction of SDF-1 expression (Petit et al.), the activation of metalloproteases that cleave VCAM-1 (Levesque et al.), and the release of norepinephrine from the sympathetic nervous system (Katayama et al.), leading to the release or mobilization of hematopoietic stem cells from the bone marrow into the periphery. The G-CSF receptor is expressed on a variety of hematopoietic cells, including myeloid-committed progenitor cells, neutrophils, granulocytes, and monocytes. In addition to hematopoietic cells, G-CSF is also expressed in cardiomyocytes, neuronal cells, mesothelial cells, and endothelial cells. Mouse G-CSF was first purified from cultures of the WEHI-3B myelomonocytic leukemia cell line as the inducer of the terminal differentiation of WEHI-3B and other myeloid leukemia cell lines (Nicola et al.). It was later cloned in monkey COS cells from a cDNA library prepared with mRNA derived from mouse fibrosarcoma NFSA cells that produce G-CSF constitutively (Tsuchiya et al.). Binding of G-CSF to its receptor leads to activation of the JAK/STAT, MAPK, PI3K, and AKT signal transduction pathways.
Expand 3 Items
Human Recombinant SCF (E. coli-expressed)
Supplier: STEMCELL Technologies
Stem cell factor (SCF) is an early-acting cytokine that plays a pivotal role in the regulation of embryonic and adult hematopoiesis. SCF promotes cell survival, proliferation, differentiation, adhesion, and functional activation of cells at multiple levels of the hematopoietic hierarchy. Together with other cytokines such as thrombopoietin and Flt3/Flk-2 Ligand, SCF is commonly used to promote expansion of primitive hematopoietic stem cells and multi-potent progenitor cells in culture (Martin et al.; Kent et al.). In synergy with various growth factors, including IL-2, IL-3, IL-6, IL-7, G-CSF, and erythropoietin, SCF increases proliferation and differentiation of myeloid and erythroid progenitor cells and a subset of lymphoid progenitor cells (Broudy). SCF is also a primary growth and activation factor for mast cells and eosinophils. SCF exists in two biologically active splice forms: a soluble and a transmembrane isoform. Upon binding to its receptor (c-Kit tyrosine kinase receptor; CD117), it activates PI3K, JAK/STAT, and MAPK pathways. SCF and signaling from c-Kit have also been reported to play an important role in pigmentation, fertility, vasculogenesis, motility of the gut via c-Kit positive interstitial cells of Cajal, and in the migration of neuronal stem and progenitor cells to sites of injury in the brain.
Expand 3 Items
Mouse Recombinant SCF (E. coli-expressed)
Supplier: STEMCELL Technologies
Stem cell factor (SCF) is an early-acting cytokine that plays a pivotal role in the regulation of embryonic and adult hematopoiesis. SCF promotes cell survival, proliferation, differentiation, adhesion, and functional activation of cells at multiple levels of the hematopoietic hierarchy. Together with other cytokines such as thrombopoietin and Flt3/Flk-2 Ligand, SCF is commonly used to promote expansion of primitive hematopoietic stem cells and multi-potent progenitor cells in culture (Huang et al.; Kent et al.). In synergy with various growth factors, including IL-2, IL-3, IL-6, IL-7, G-CSF, and erythropoietin, SCF increases proliferation and differentiation of myeloid and erythroid progenitor cells and a subset of lymphoid progenitor cells (Broudy). In the mouse, SCF is essential during fetal gonadal development (Mauduit). It is produced by stromal cells in the fetal liver, bone marrow, and thymus, in the central nervous system, in keratinocytes, and in the gut mucosa, and can function as a chemotactic and chemokinetic factor. SCF exists in two biologically active splice forms: a soluble and a transmembrane isoform. Upon binding to its receptor (c-kit tyrosine kinase receptor; CD117), it activates PI3K, JAK/STAT, and MAPK pathways. SCF and signaling from c-kit has also been reported to play an important role in pigmentation, fertility, vasculogenesis, motility of the gut via c-kit-positive interstitial cells of Cajal, and in the migration of neuronal stem and progenitor cells to sites of injury in the brain (Lennartsson and Ronnstrand).
Expand 4 Items
Human Recombinant BDNF, ACF
Supplier: STEMCELL Technologies
Brain-derived neurotrophic factor (BDNF), like nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), is a member of the NGF family of neurotrophins, which are required for the differentiation and survival of specific neuronal subpopulations in both the central and the peripheral nervous systems (Minichiello and Klein; Minichiello et al.). BDNF binds with high affinity to the TRKB kinase receptor, and activates AKT and ERK pathways (Mattson et al.). It is expressed in hippocampus, cortex, and synapses of the basal forebrain. BDNF acts as a survival factor for human embryonic stem cells when plated on either feeder cells or Corning® Matrigel® (Pyle et al.). BDNF regulates synaptic transmission and plasticity at adult synapses in the central nervous system, contributes to adaptive neuronal responses including long-term potentiation, long-term depression, certain forms of short-term synaptic plasticity, as well as homeostatic regulation of neuronal excitability (Reichardt). It also has a role in neurogenesis by promoting survival and growth of dorsal root ganglion cells, and hippocampal and cortical neurons (Binder and Scharfman). BDNF, together with glial cell-derived neurotrophic factor (GDNF) and other supplements, is commonly used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into neurons (Brafman). This product is animal component-free.
Expand 3 Items
Human Recombinant M-CSF, ACF
Supplier: STEMCELL Technologies
Macrophage colony-stimulating factor (M-CSF) is a homodimeric glycoprotein growth factor that regulates proliferation and differentiation of myeloid hematopoietic progenitors to mononuclear phagocytic cell lineages, including monocytes, macrophages, and osteoclasts. M-CSF is a crucial factor for the development of tissue-resident macrophages in most tissues (Ginhoux andamp; Jung). It is required for the maturation and activation of monocytes and macrophages, and regulates inflammatory responses in conjunction with other stimuli such as IFN-γ, LPS, and IL-4 (Murray et al.). M-CSF is also required for bone resorption by osteoclasts, and is involved in the development and regulation of placenta, mammary gland, and brain. M-CSF is produced by monocytes, fibroblasts, osteoclasts, stromal cells, endothelial cells, and tumor cells (Chockalingam andamp; Ghosh). M-CSF exerts its biological effects by signaling through a receptor tyrosine kinase (CSF-1R or M-CSF-R) encoded by the c-fms proto-oncogene (Hamilton). CSF-1R shares similar structural features with other growth factor receptors, including the stem cell factor (SCF) receptor, platelet-derived growth factor receptor (PDGF-R), and Flt3/Flk-2 receptor tyrosine kinase. Stimulation of the CSF-1R upon binding to M-CSF activates MAPK, PI3K, and PLCγ signaling pathways (Chockalingam andamp; Ghosh). Human and mouse M-CSF sequences are highly conserved both at nucleotide and amino acid levels (80% homology; DeLamarter et al.). This product is animal component-free.
Expand 3 Items
Human Recombinant Flt3/Flk-2 Ligand (E. coli expressed)
Supplier: STEMCELL Technologies
Flt3/Flk-2 (Fms-like tyrosine kinase 3/fetal liver kinase-2) Ligand is a hematopoietic cytokine that plays an important role as a co-stimulatory factor in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells and in the development of the immune system (Hannum et al.). Flt3/Flk-2 Ligand, together with stem cell factor and thrombopoietin, is commonly used to promote expansion of primitive CD34+ hematopoietic cells in culture. In combination with myeloid cytokines such as GM-CSF, G-CSF, or M-CSF, Flt3/Flk-2 Ligand enhances the growth and numbers of clonogenic myeloid progenitor cells. In synergy with the interleukins IL-3, IL-4, IL-7, IL-11, IL-12, IL-15, and GM-CSF and TNF-α, Flt3/Flk-2 Ligand regulates the development of various lymphoid progenitor cells, including dendritic cell, B cell, T cell, and NK cell progenitors. In contrast, Flt3/Flk-2 Ligand has no significant effect on erythropoiesis or megakaryopoiesis (Drexler andamp; Quentmeier; Wodnar-Filipowicz). Flt3/Flk-2 Ligand exists as membrane-bound and soluble isoforms. Both isoforms are biologically active and signal through the class III tyrosine kinase receptor (Flt3/Flk-2, CD135; Rosnet et al.). Flt3/Flk-2 Ligand is produced by a variety of cell types, including uncommitted and committed hematopoietic cells and stromal fibroblasts, whereas expression of the Flt3/Flk-2 receptor is restricted to CD34+ hematopoietic stem and progenitor cells. Flt3/Flk-2 receptor is also expressed on leukemic cells and outside the hematopoietic system in the brain, placenta, and testis (Drexler andamp; Quentmeier; Hannum et al.).
Expand 4 Items
Mouse Recombinant Flt3/Flk-2 Ligand
Supplier: STEMCELL Technologies
Flt3/Flk-2 (Fms-like tyrosine kinase 3/fetal liver kinase-2) ligand is a hematopoietic cytokine that plays an important role as a co-stimulatory factor in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells and the development of the immune system (Lyman et al.; Rosnet et al.). Flt3/Flk-2 ligand, together with stem cell factor and thrombopoietin, is commonly used to promote expansion of primitive hematopoietic cells in culture. In combination with myeloid cytokines such as GM-CSF, G-CSF, or M-CSF, Flt3/Flk-2 ligand enhances the growth and numbers of clonogenic myeloid progenitor cells. In synergy with IL-3, IL-4, IL-7, IL-11, IL-12, IL-15, GM-CSF, and TNF-α, Flt3/Flk-2 ligand regulates the development of various lymphoid progenitor cells, including dendritic cell, B cell, T cell, and NK cell progenitors. In contrast, Flt3/Flk-2 ligand has no significant effect on erythropoiesis or megakaryopoiesis (Drexler and Quentmeier; Wodnar-Filipowicz). Flt3/Flk-2 ligand exists as membrane-bound and soluble isoforms. Both isoforms are biologically active and signal through the class III tyrosine kinase receptor (Flt3/Flk-2, CD135; Rosnet et al.). Flt3/Flk-2 ligand is produced by a variety of cell types, including uncommitted and committed hematopoietic cells and stromal fibroblasts, whereas expression of the Flt3/Flk-2 receptor is restricted to CD34+ hematopoietic stem and progenitor cells. Flt3/Flk-2 receptor is also expressed outside the hematopoietic system in the brain, placenta, and testis (Drexler and Quentmeier; Hannum et al.).
Expand 3 Items
Human Recombinant Flt3/Flk-2 Ligand, ACF
Supplier: STEMCELL Technologies
Flt3/Flk-2 (Fms-like tyrosine kinase 3/fetal liver kinase-2) Ligand is a hematopoietic cytokine that plays an important role as a co-stimulatory factor in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells and the development of the immune system (Hannum et al.). Flt3/Flk-2 Ligand, together with stem cell factor and thrombopoietin, is commonly used to promote expansion of primitive CD34+ hematopoietic cells in culture. In combination with myeloid cytokines such as GM-CSF, G-CSF, or M-CSF, Flt3/Flk-2 Ligand enhances the growth and numbers of clonogenic myeloid progenitor cells. In synergy with the interleukins IL-3, IL-4, IL-7, IL-11, IL-12, IL-15, and GM-CSF and TNF-α, Flt3/Flk-2 Ligand regulates the development of various lymphoid progenitor cells, including dendritic cell, B cell, T cell, and NK cell progenitors. In contrast, Flt3/Flk-2 Ligand has no significant effect on erythropoiesis or megakaryopoiesis (Drexler and Quentmeier; Wodnar-Filipowicz). Flt3/Flk-2 Ligand exists as membrane-bound and soluble isoforms. Both isoforms are biologically active and signal through the class III tyrosine kinase receptor (Flt3/Flk-2, CD135; Rosnet et al.). Flt3/Flk-2 Ligand is produced by a variety of cell types, including uncommitted and committed hematopoietic cells and stromal fibroblasts, whereas expression of the Flt3/Flk-2 receptor is restricted to CD34+ hematopoietic stem and progenitor cells. Flt3/Flk-2 receptor is also expressed on leukemic cells and outside the hematopoietic system in the brain, placenta, and testis (Drexler and Quentmeier; Hannum et al.). This product is animal component-free.