Order Entry
France
ContactUsLinkComponent
91798 results for "Acide+phtalique&amp"

91798 Results for: "Acide+phtalique&amp"

Sort By

Anti-AACS/ACSF1 Rabbit Polyclonal Antibody (Alexa Fluor® 680)

Supplier: Bioss

ACSF1 is a 672 amino acid protein belonging to the ATP-dependent AMP-binding enzyme family. Encoded by a gene that maps to human chromosome 12q24.31, ACSF1 is highly expressed in kidney, heart and brain, and shows similar neural expression as HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase). Existing as three alternatively spliced isoforms, ACSF1 participates in ATP binding, ligase activity, acetoacetate-CoA ligase activity and nucleotide binding. The ACSF1 promoter is a known PPAR target gene, with the nuclear receptor recruited to the ACSF1 promoter by direct interaction with stimulating protein-1 (Sp1). ACSF1 activates acetoacetate and is highly regulated by modulators that affect HMGCR and cholesterol biosynthesis.

Expand 1 Items
Loading...

Anti-AMPK beta 1 + 2 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

PRKAB2 ans PRKAB1 are regulatory subunits of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status and plays a role in protecting cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is responsible for the regulation of fatty acid synthesis by phosphorylation of acetyl-CoA carboxylase (ACC). It also regulates cholesterol synthesis via phosphorylation and inactivation of hydroxymethylglutaryl-CoA reductase (HMGCR) and hormone-sensitive lipase. PRKAB2 may be a positive regulator of AMPK activity.

Expand 1 Items
Loading...

Anti-CNNM3 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Cyclin M3 is a 707 amino acid multi-pass membrane protein that shares weak sequence similarity with cyclin proteins, yet displays no cyclin-like function in vivo. Though ubiquitously expressed, Cyclin M3 is found at highest levels in kidney, brain, spleen and heart. Cyclin M3 is localized to the nucleus where it is likely a metal transporter. Cyclin M3 contains two CBS domains, which appear to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet and may play a regulatory role in sensitizing proteins to adenosyl-carrying ligands. There are three isoforms of Cyclin M3 that are produced as a result of alternative splicing events.

Expand 1 Items
Loading...

Anti-CNNM3 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Cyclin M3 is a 707 amino acid multi-pass membrane protein that shares weak sequence similarity with cyclin proteins, yet displays no cyclin-like function in vivo. Though ubiquitously expressed, Cyclin M3 is found at highest levels in kidney, brain, spleen and heart. Cyclin M3 is localized to the nucleus where it is likely a metal transporter. Cyclin M3 contains two CBS domains, which appear to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet and may play a regulatory role in sensitizing proteins to adenosyl-carrying ligands. There are three isoforms of Cyclin M3 that are produced as a result of alternative splicing events.

Expand 1 Items
Loading...

Anti-Cyclin M3 Rabbit Polyclonal Antibody (Alexa Fluor® 680)

Supplier: Bioss

Cyclin M3 is a 707 amino acid multi-pass membrane protein that shares weak sequence similarity with cyclin proteins, yet displays no cyclin-like function in vivo. Though ubiquitously expressed, Cyclin M3 is found at highest levels in kidney, brain, spleen and heart. Cyclin M3 is localised to the nucleus where it is likely a metal transporter. Cyclin M3 contains two CBS domains, which appear to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet and may play a regulatory role in sensitizing proteins to adenosyl-carrying ligands. There are three isoforms of Cyclin M3 that are produced as a result of alternative splicing events.

Expand 1 Items
Loading...

Anti-CNNM3 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

Cyclin M3 is a 707 amino acid multi-pass membrane protein that shares weak sequence similarity with cyclin proteins, yet displays no cyclin-like function in vivo. Though ubiquitously expressed, Cyclin M3 is found at highest levels in kidney, brain, spleen and heart. Cyclin M3 is localized to the nucleus where it is likely a metal transporter. Cyclin M3 contains two CBS domains, which appear to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet and may play a regulatory role in sensitizing proteins to adenosyl-carrying ligands. There are three isoforms of Cyclin M3 that are produced as a result of alternative splicing events.

Expand 1 Items
Loading...

Anti-AACS Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

ACSF1 is a 672 amino acid protein belonging to the ATP-dependent AMP-binding enzyme family. Encoded by a gene that maps to human chromosome 12q24.31, ACSF1 is highly expressed in kidney, heart and brain, and shows similar neural expression as HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase). Existing as three alternatively spliced isoforms, ACSF1 participates in ATP binding, ligase activity, acetoacetate-CoA ligase activity and nucleotide binding. The ACSF1 promoter is a known PPAR?target gene, with the nuclear receptor recruited to the ACSF1 promoter by direct interaction with stimulating protein-1 (Sp1). ACSF1 activates acetoacetate and is highly regulated by modulators that affect HMGCR and cholesterol biosynthesis.

Expand 1 Items
Loading...

Anti-AACS Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

ACSF1 is a 672 amino acid protein belonging to the ATP-dependent AMP-binding enzyme family. Encoded by a gene that maps to human chromosome 12q24.31, ACSF1 is highly expressed in kidney, heart and brain, and shows similar neural expression as HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase). Existing as three alternatively spliced isoforms, ACSF1 participates in ATP binding, ligase activity, acetoacetate-CoA ligase activity and nucleotide binding. The ACSF1 promoter is a known PPAR?target gene, with the nuclear receptor recruited to the ACSF1 promoter by direct interaction with stimulating protein-1 (Sp1). ACSF1 activates acetoacetate and is highly regulated by modulators that affect HMGCR and cholesterol biosynthesis.

Expand 1 Items
Loading...

Anti-AACS Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

ACSF1 is a 672 amino acid protein belonging to the ATP-dependent AMP-binding enzyme family. Encoded by a gene that maps to human chromosome 12q24.31, ACSF1 is highly expressed in kidney, heart and brain, and shows similar neural expression as HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase). Existing as three alternatively spliced isoforms, ACSF1 participates in ATP binding, ligase activity, acetoacetate-CoA ligase activity and nucleotide binding. The ACSF1 promoter is a known PPAR?target gene, with the nuclear receptor recruited to the ACSF1 promoter by direct interaction with stimulating protein-1 (Sp1). ACSF1 activates acetoacetate and is highly regulated by modulators that affect HMGCR and cholesterol biosynthesis.

Expand 1 Items
Loading...

Anti-AMPK beta 1 + 2 Rabbit Polyclonal Antibody (Alexa Fluor® 680)

Supplier: Bioss

PRKAB2 ans PRKAB1 are regulatory subunits of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status and plays a role in protecting cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is responsible for the regulation of fatty acid synthesis by phosphorylation of acetyl-CoA carboxylase (ACC). It also regulates cholesterol synthesis via phosphorylation and inactivation of hydroxymethylglutaryl-CoA reductase (HMGCR) and hormone-sensitive lipase. PRKAB2 may be a positive regulator of AMPK activity.

Expand 1 Items
Loading...

Anti-AMPK beta 1 + 2 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

PRKAB2 ans PRKAB1 are regulatory subunits of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status and plays a role in protecting cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is responsible for the regulation of fatty acid synthesis by phosphorylation of acetyl-CoA carboxylase (ACC). It also regulates cholesterol synthesis via phosphorylation and inactivation of hydroxymethylglutaryl-CoA reductase (HMGCR) and hormone-sensitive lipase. PRKAB2 may be a positive regulator of AMPK activity.

Expand 1 Items
Loading...

Anti-AMPK beta 1 + 2 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

PRKAB2 ans PRKAB1 are regulatory subunits of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status and plays a role in protecting cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is responsible for the regulation of fatty acid synthesis by phosphorylation of acetyl-CoA carboxylase (ACC). It also regulates cholesterol synthesis via phosphorylation and inactivation of hydroxymethylglutaryl-CoA reductase (HMGCR) and hormone-sensitive lipase. PRKAB2 may be a positive regulator of AMPK activity.

Expand 1 Items
Loading...
Anti-AMPK beta 1 + 2 Rabbit Polyclonal Antibody

Anti-AMPK beta 1 + 2 Rabbit Polyclonal Antibody

Supplier: Bioss

PRKAB2 ans PRKAB1 are regulatory subunits of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status and plays a role in protecting cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is responsible for the regulation of fatty acid synthesis by phosphorylation of acetyl-CoA carboxylase (ACC). It also regulates cholesterol synthesis via phosphorylation and inactivation of hydroxymethylglutaryl-CoA reductase (HMGCR) and hormone-sensitive lipase. PRKAB2 may be a positive regulator of AMPK activity.

Expand 1 Items
Loading...

Anti-CNNM3 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

Cyclin M3 is a 707 amino acid multi-pass membrane protein that shares weak sequence similarity with cyclin proteins, yet displays no cyclin-like function in vivo. Though ubiquitously expressed, Cyclin M3 is found at highest levels in kidney, brain, spleen and heart. Cyclin M3 is localized to the nucleus where it is likely a metal transporter. Cyclin M3 contains two CBS domains, which appear to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet and may play a regulatory role in sensitizing proteins to adenosyl-carrying ligands. There are three isoforms of Cyclin M3 that are produced as a result of alternative splicing events.

Expand 1 Items
Loading...

Anti-AACS/ACSF1 Rabbit Polyclonal Antibody (Alexa Fluor® 750)

Supplier: Bioss

ACSF1 is a 672 amino acid protein belonging to the ATP-dependent AMP-binding enzyme family. Encoded by a gene that maps to human chromosome 12q24.31, ACSF1 is highly expressed in kidney, heart and brain, and shows similar neural expression as HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase). Existing as three alternatively spliced isoforms, ACSF1 participates in ATP binding, ligase activity, acetoacetate-CoA ligase activity and nucleotide binding. The ACSF1 promoter is a known PPAR target gene, with the nuclear receptor recruited to the ACSF1 promoter by direct interaction with stimulating protein-1 (Sp1). ACSF1 activates acetoacetate and is highly regulated by modulators that affect HMGCR and cholesterol biosynthesis.

Expand 1 Items
Loading...

Anti-AACS Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

ACSF1 is a 672 amino acid protein belonging to the ATP-dependent AMP-binding enzyme family. Encoded by a gene that maps to human chromosome 12q24.31, ACSF1 is highly expressed in kidney, heart and brain, and shows similar neural expression as HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase). Existing as three alternatively spliced isoforms, ACSF1 participates in ATP binding, ligase activity, acetoacetate-CoA ligase activity and nucleotide binding. The ACSF1 promoter is a known PPAR?target gene, with the nuclear receptor recruited to the ACSF1 promoter by direct interaction with stimulating protein-1 (Sp1). ACSF1 activates acetoacetate and is highly regulated by modulators that affect HMGCR and cholesterol biosynthesis.

Expand 1 Items
Loading...

Anti-AMPK beta 1 + 2 Rabbit Polyclonal Antibody (Alexa Fluor® 750)

Supplier: Bioss

PRKAB2 ans PRKAB1 are regulatory subunits of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status and plays a role in protecting cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is responsible for the regulation of fatty acid synthesis by phosphorylation of acetyl-CoA carboxylase (ACC). It also regulates cholesterol synthesis via phosphorylation and inactivation of hydroxymethylglutaryl-CoA reductase (HMGCR) and hormone-sensitive lipase. PRKAB2 may be a positive regulator of AMPK activity.

Expand 1 Items
Loading...

Anti-AMPK beta 1 + 2 Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

PRKAB2 ans PRKAB1 are regulatory subunits of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status and plays a role in protecting cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is responsible for the regulation of fatty acid synthesis by phosphorylation of acetyl-CoA carboxylase (ACC). It also regulates cholesterol synthesis via phosphorylation and inactivation of hydroxymethylglutaryl-CoA reductase (HMGCR) and hormone-sensitive lipase. PRKAB2 may be a positive regulator of AMPK activity.

Expand 1 Items
Loading...

Anti-AMPK beta 1 + 2 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

PRKAB2 ans PRKAB1 are regulatory subunits of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status and plays a role in protecting cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is responsible for the regulation of fatty acid synthesis by phosphorylation of acetyl-CoA carboxylase (ACC). It also regulates cholesterol synthesis via phosphorylation and inactivation of hydroxymethylglutaryl-CoA reductase (HMGCR) and hormone-sensitive lipase. PRKAB2 may be a positive regulator of AMPK activity.

Expand 1 Items
Loading...

Anti-AMPK beta 1 + 2 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

PRKAB2 ans PRKAB1 are regulatory subunits of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status and plays a role in protecting cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is responsible for the regulation of fatty acid synthesis by phosphorylation of acetyl-CoA carboxylase (ACC). It also regulates cholesterol synthesis via phosphorylation and inactivation of hydroxymethylglutaryl-CoA reductase (HMGCR) and hormone-sensitive lipase. PRKAB2 may be a positive regulator of AMPK activity.

Expand 1 Items
Loading...

Anti-CNNM3 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Cyclin M3 is a 707 amino acid multi-pass membrane protein that shares weak sequence similarity with cyclin proteins, yet displays no cyclin-like function in vivo. Though ubiquitously expressed, Cyclin M3 is found at highest levels in kidney, brain, spleen and heart. Cyclin M3 is localized to the nucleus where it is likely a metal transporter. Cyclin M3 contains two CBS domains, which appear to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet and may play a regulatory role in sensitizing proteins to adenosyl-carrying ligands. There are three isoforms of Cyclin M3 that are produced as a result of alternative splicing events.

Expand 1 Items
Loading...

Anti-ENTPD2 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

CD39, also known as ectonucleoside triphosphate diphosphohydrolase 1 (ENP1), is an integral membrane glycoprotein that acts as an extracellular nucleotide-hydrolyzing enzyme. CD39 inhibits ADP-induced platelet aggregation by hydrolyzing ADP to AMP and ultimately generating adenosine. Intracellular CD39 undergoes glycosylation at 6 N-glycosylation sites and translocates to the membrane in order to be an active enzyme. CD39L1 is a 495 amino acid multi-pass membrane protein that requires calcium and magnesium cofactors to hydrolyze ATP and other nucleotides in the regulation of purigenic neurotransmission. CD39L1 is expressed in kidney, colon, heart, testis, pancreas, brain, prostate, skeletal muscle, small intestine and ovaries. There are two isoforms of CD39L1 that are produced as a result of alternative splicing events.

Expand 1 Items
Loading...

Anti-GPRIN2 Rabbit Polyclonal Antibody

Supplier: Bioss

G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/actions, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. GRIN2 (G protein-regulated inducer of neurite outgrowth 2), also known as GPRIN2, is a 458 amino acid protein that is expressed in cerebellum and is thought to play a role in neurite outgrowth. GRIN2 interacts with activated G?oand G?, and is encoded by a gene that maps to human chromosome 10q11.22.

Expand 1 Items
Loading...

Anti-GPRIN3 Rabbit Polyclonal Antibody

Supplier: Bioss

May be involved in neurite outgrowth.G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/action, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling, and are involved in many pathological conditions. GRIN3 (G protein-regulated inducer of neurite outgrowth 3), also known as GPRIN3, is a 776 amino acid protein that contains a C-terminal region which shares a high homology with GRIN2 and GRIN1, and may function in neurite outgrowth.

Expand 1 Items
Loading...

Anti-GPRIN2 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/actions, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. GRIN2 (G protein-regulated inducer of neurite outgrowth 2), also known as GPRIN2, is a 458 amino acid protein that is expressed in cerebellum and is thought to play a role in neurite outgrowth. GRIN2 interacts with activated G?oand G?, and is encoded by a gene that maps to human chromosome 10q11.22.

Expand 1 Items
Loading...

Anti-GPRIN3 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

May be involved in neurite outgrowth.G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/action, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling, and are involved in many pathological conditions. GRIN3 (G protein-regulated inducer of neurite outgrowth 3), also known as GPRIN3, is a 776 amino acid protein that contains a C-terminal region which shares a high homology with GRIN2 and GRIN1, and may function in neurite outgrowth.

Expand 1 Items
Loading...

Anti-GPRIN2 Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/actions, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. GRIN2 (G protein-regulated inducer of neurite outgrowth 2), also known as GPRIN2, is a 458 amino acid protein that is expressed in cerebellum and is thought to play a role in neurite outgrowth. GRIN2 interacts with activated G?oand G?, and is encoded by a gene that maps to human chromosome 10q11.22.

Expand 1 Items
Loading...

Anti-GPRIN2 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/actions, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling and are involved in many pathological conditions. GRIN2 (G protein-regulated inducer of neurite outgrowth 2), also known as GPRIN2, is a 458 amino acid protein that is expressed in cerebellum and is thought to play a role in neurite outgrowth. GRIN2 interacts with activated G?oand G?, and is encoded by a gene that maps to human chromosome 10q11.22.

Expand 1 Items
Loading...

Anti-GPRIN3 Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

May be involved in neurite outgrowth.G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/action, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling, and are involved in many pathological conditions. GRIN3 (G protein-regulated inducer of neurite outgrowth 3), also known as GPRIN3, is a 776 amino acid protein that contains a C-terminal region which shares a high homology with GRIN2 and GRIN1, and may function in neurite outgrowth.

Expand 1 Items
Loading...

Anti-GPRIN3 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

May be involved in neurite outgrowth.G protein-coupled receptors (GPCRs) represent a large superfamily of cell-surface receptors that are involved in a multitude of physiological processes such as perception of sensory information, modulation of synaptic transmission, hormone release/action, regulation of cell contraction/migration and cell growth/differentiation. GPCRs interact with G proteins (heterotrimeric GTPases) to synthesize intracellular second messengers, such as diacylglycerol, cyclic AMP, inositol phosphates and calcium ions. Their diverse biological functions range from vision and olfaction to neuronal and endocrine signaling, and are involved in many pathological conditions. GRIN3 (G protein-regulated inducer of neurite outgrowth 3), also known as GPRIN3, is a 776 amino acid protein that contains a C-terminal region which shares a high homology with GRIN2 and GRIN1, and may function in neurite outgrowth.

Expand 1 Items
Loading...
Sort By
Recommended for You