Order Entry
Finland
ContactUsLinkComponent
37341 results for "Borane dimethylamine complex&amp"

37341 Results for: "Borane dimethylamine complex&amp"

Sort By

Anti-AMPK gamma 1/2/3 Rabbit Polyclonal Antibody (Alexa Fluor® 750)

Supplier: Bioss

AMPK is a heterotrimeric complex comprising a catalytic a subunit and regulatory b and g subunits. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is activated by high AMP and low ATP through a mechanism involving allosteric regulation, promotion of phosphorylation by an upstream protein kinase known as AMPK kinase and inhibition of dephosphorylation. Activated AMPK can phosphorylate and regulate in vivo hydroxy-methylglutaryl-CoA reductase and acetyl-CoA carboxylase, which are key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively. The human AMPKa1 and AMPKa2 genes encode 548 amino acid and 552 amino acid proteins, respectively. Human AMPKb1 encodes a 271 amino acid protein and human AMPKb2 encodes a 272 amino acid protein. The human AMPKg1 gene encodes a 331 amino acid protein. Human AMPKg2 and AMPKg3, which are 569 and 492 amino acid proteins, respectively, contain unique N-terminal domains and may participate directly in the binding of AMP within the AMPK complex.

Expand 1 Items
Loading...

Anti-AMPK gamma 1/2/3 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

AMPK is a heterotrimeric complex comprising a catalytic a subunit and regulatory b and g subunits. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is activated by high AMP and low ATP through a mechanism involving allosteric regulation, promotion of phosphorylation by an upstream protein kinase known as AMPK kinase and inhibition of dephosphorylation. Activated AMPK can phosphorylate and regulate in vivo hydroxy-methylglutaryl-CoA reductase and acetyl-CoA carboxylase, which are key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively. The human AMPKa1 and AMPKa2 genes encode 548 amino acid and 552 amino acid proteins, respectively. Human AMPKb1 encodes a 271 amino acid protein and human AMPKb2 encodes a 272 amino acid protein. The human AMPKg1 gene encodes a 331 amino acid protein. Human AMPKg2 and AMPKg3, which are 569 and 492 amino acid proteins, respectively, contain unique N-terminal domains and may participate directly in the binding of AMP within the AMPK complex.

Expand 1 Items
Loading...

Anti-Glutamyl Prolyl tRNA synthetase/ProRS Rabbit Polyclonal Antibody (Alexa Fluor® 680)

Supplier: Bioss

Catalyzes the attachment of the cognate amino acid to the corresponding tRNA in a two-step reaction: the amino acid is first activated by ATP to form a covalent intermediate with AMP and is then transferred to the acceptor end of the cognate tRNA. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma activation and subsequent phosphorylation dissociates from the multisynthetase complex and assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation.

Expand 1 Items
Loading...

Anti-AMPK gamma 1/2/3 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

AMPK is a heterotrimeric complex comprising a catalytic a subunit and regulatory b and g subunits. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is activated by high AMP and low ATP through a mechanism involving allosteric regulation, promotion of phosphorylation by an upstream protein kinase known as AMPK kinase and inhibition of dephosphorylation. Activated AMPK can phosphorylate and regulate in vivo hydroxy-methylglutaryl-CoA reductase and acetyl-CoA carboxylase, which are key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively. The human AMPKa1 and AMPKa2 genes encode 548 amino acid and 552 amino acid proteins, respectively. Human AMPKb1 encodes a 271 amino acid protein and human AMPKb2 encodes a 272 amino acid protein. The human AMPKg1 gene encodes a 331 amino acid protein. Human AMPKg2 and AMPKg3, which are 569 and 492 amino acid proteins, respectively, contain unique N-terminal domains and may participate directly in the binding of AMP within the AMPK complex.

Expand 1 Items
Loading...

Anti-AMPK gamma 1/2/3 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

AMPK is a heterotrimeric complex comprising a catalytic a subunit and regulatory b and g subunits. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is activated by high AMP and low ATP through a mechanism involving allosteric regulation, promotion of phosphorylation by an upstream protein kinase known as AMPK kinase and inhibition of dephosphorylation. Activated AMPK can phosphorylate and regulate in vivo hydroxy-methylglutaryl-CoA reductase and acetyl-CoA carboxylase, which are key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively. The human AMPKa1 and AMPKa2 genes encode 548 amino acid and 552 amino acid proteins, respectively. Human AMPKb1 encodes a 271 amino acid protein and human AMPKb2 encodes a 272 amino acid protein. The human AMPKg1 gene encodes a 331 amino acid protein. Human AMPKg2 and AMPKg3, which are 569 and 492 amino acid proteins, respectively, contain unique N-terminal domains and may participate directly in the binding of AMP within the AMPK complex.

Expand 1 Items
Loading...

Anti-Glutamyl Prolyl tRNA synthetase/ProRS Rabbit Polyclonal Antibody (Alexa Fluor® 750)

Supplier: Bioss

Catalyzes the attachment of the cognate amino acid to the corresponding tRNA in a two-step reaction: the amino acid is first activated by ATP to form a covalent intermediate with AMP and is then transferred to the acceptor end of the cognate tRNA. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma activation and subsequent phosphorylation dissociates from the multisynthetase complex and assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation.

Expand 1 Items
Loading...

Anti-AMPK gamma 1/2/3 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

AMPK is a heterotrimeric complex comprising a catalytic a subunit and regulatory b and g subunits. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is activated by high AMP and low ATP through a mechanism involving allosteric regulation, promotion of phosphorylation by an upstream protein kinase known as AMPK kinase and inhibition of dephosphorylation. Activated AMPK can phosphorylate and regulate in vivo hydroxy-methylglutaryl-CoA reductase and acetyl-CoA carboxylase, which are key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively. The human AMPKa1 and AMPKa2 genes encode 548 amino acid and 552 amino acid proteins, respectively. Human AMPKb1 encodes a 271 amino acid protein and human AMPKb2 encodes a 272 amino acid protein. The human AMPKg1 gene encodes a 331 amino acid protein. Human AMPKg2 and AMPKg3, which are 569 and 492 amino acid proteins, respectively, contain unique N-terminal domains and may participate directly in the binding of AMP within the AMPK complex.

Expand 1 Items
Loading...

Anti-AMPK gamma 1/2/3 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

AMPK is a heterotrimeric complex comprising a catalytic a subunit and regulatory b and g subunits. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is activated by high AMP and low ATP through a mechanism involving allosteric regulation, promotion of phosphorylation by an upstream protein kinase known as AMPK kinase and inhibition of dephosphorylation. Activated AMPK can phosphorylate and regulate in vivo hydroxy-methylglutaryl-CoA reductase and acetyl-CoA carboxylase, which are key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively. The human AMPKa1 and AMPKa2 genes encode 548 amino acid and 552 amino acid proteins, respectively. Human AMPKb1 encodes a 271 amino acid protein and human AMPKb2 encodes a 272 amino acid protein. The human AMPKg1 gene encodes a 331 amino acid protein. Human AMPKg2 and AMPKg3, which are 569 and 492 amino acid proteins, respectively, contain unique N-terminal domains and may participate directly in the binding of AMP within the AMPK complex.

Expand 1 Items
Loading...

Anti-AMPK gamma 1/2/3 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

AMPK is a heterotrimeric complex comprising a catalytic a subunit and regulatory b and g subunits. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is activated by high AMP and low ATP through a mechanism involving allosteric regulation, promotion of phosphorylation by an upstream protein kinase known as AMPK kinase and inhibition of dephosphorylation. Activated AMPK can phosphorylate and regulate in vivo hydroxy-methylglutaryl-CoA reductase and acetyl-CoA carboxylase, which are key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively. The human AMPKa1 and AMPKa2 genes encode 548 amino acid and 552 amino acid proteins, respectively. Human AMPKb1 encodes a 271 amino acid protein and human AMPKb2 encodes a 272 amino acid protein. The human AMPKg1 gene encodes a 331 amino acid protein. Human AMPKg2 and AMPKg3, which are 569 and 492 amino acid proteins, respectively, contain unique N-terminal domains and may participate directly in the binding of AMP within the AMPK complex.

Expand 1 Items
Loading...

Anti-AMPK gamma 1/2/3 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

AMPK is a heterotrimeric complex comprising a catalytic a subunit and regulatory b and g subunits. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is activated by high AMP and low ATP through a mechanism involving allosteric regulation, promotion of phosphorylation by an upstream protein kinase known as AMPK kinase and inhibition of dephosphorylation. Activated AMPK can phosphorylate and regulate in vivo hydroxy-methylglutaryl-CoA reductase and acetyl-CoA carboxylase, which are key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively. The human AMPKa1 and AMPKa2 genes encode 548 amino acid and 552 amino acid proteins, respectively. Human AMPKb1 encodes a 271 amino acid protein and human AMPKb2 encodes a 272 amino acid protein. The human AMPKg1 gene encodes a 331 amino acid protein. Human AMPKg2 and AMPKg3, which are 569 and 492 amino acid proteins, respectively, contain unique N-terminal domains and may participate directly in the binding of AMP within the AMPK complex.

Expand 1 Items
Loading...

Anti-AMPK gamma 1/2/3 Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

AMPK is a heterotrimeric complex comprising a catalytic a subunit and regulatory b and g subunits. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is activated by high AMP and low ATP through a mechanism involving allosteric regulation, promotion of phosphorylation by an upstream protein kinase known as AMPK kinase and inhibition of dephosphorylation. Activated AMPK can phosphorylate and regulate in vivo hydroxy-methylglutaryl-CoA reductase and acetyl-CoA carboxylase, which are key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively. The human AMPKa1 and AMPKa2 genes encode 548 amino acid and 552 amino acid proteins, respectively. Human AMPKb1 encodes a 271 amino acid protein and human AMPKb2 encodes a 272 amino acid protein. The human AMPKg1 gene encodes a 331 amino acid protein. Human AMPKg2 and AMPKg3, which are 569 and 492 amino acid proteins, respectively, contain unique N-terminal domains and may participate directly in the binding of AMP within the AMPK complex.

Expand 1 Items
Loading...

Anti-AMPK gamma 1/2/3 Rabbit Polyclonal Antibody (Alexa Fluor® 680)

Supplier: Bioss

AMPK is a heterotrimeric complex comprising a catalytic a subunit and regulatory b and g subunits. It protects cells from stresses that cause ATP depletion by switching off ATP-consuming biosynthetic pathways. AMPK is activated by high AMP and low ATP through a mechanism involving allosteric regulation, promotion of phosphorylation by an upstream protein kinase known as AMPK kinase and inhibition of dephosphorylation. Activated AMPK can phosphorylate and regulate in vivo hydroxy-methylglutaryl-CoA reductase and acetyl-CoA carboxylase, which are key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively. The human AMPKa1 and AMPKa2 genes encode 548 amino acid and 552 amino acid proteins, respectively. Human AMPKb1 encodes a 271 amino acid protein and human AMPKb2 encodes a 272 amino acid protein. The human AMPKg1 gene encodes a 331 amino acid protein. Human AMPKg2 and AMPKg3, which are 569 and 492 amino acid proteins, respectively, contain unique N-terminal domains and may participate directly in the binding of AMP within the AMPK complex.

Expand 1 Items
Loading...

Anti-GNAT1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-GNAS Rabbit Polyclonal Antibody (Alexa Fluor® 680)

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-GNAS Rabbit Polyclonal Antibody (Alexa Fluor® 750)

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-GNAT1 Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-GNAT1 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-GNAT1 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-GNAT1 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-GNAT1 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-GNAT1 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-GNAT1 Rabbit Polyclonal Antibody (Alexa Fluor® 647)

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-GNAT1 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-G protein alpha Rabbit Polyclonal Antibody

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-CAB39 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Mouse protein 25 alpha (MO25 alpha, CAB39) is a 40-kDa protein that, together with the STE20-related adaptor-alpha (STRAD alpha) pseudo kinase, forms a regulatory complex capable of stimulating the activity of the LKB1 tumor suppressor protein kinase. The latter is mutated in the inherited Peutz-Jeghers cancer syndrome (PJS). CAB39 binds directly to a conserved Trp-Glu-Phe sequence at the STRAD alpha C terminus, markedly enhancing binding of STRAD alpha to LKB1 and increasing LKB1 catalytic activity. Skeletal muscle contraction results in the phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an upstream kinase (AMPKK). The LKB1-STE-related adaptor (STRAD)-mouse protein 25 (MO25) complex is the major AMPKK in skeletal muscle; however, LKB1-STRAD-MO25 activity is not increased by muscle contraction. This relationship suggests that phosphorylation of AMPK by LKB1-STRAD-MO25 during skeletal muscle contraction may be regulated by allosteric mechanisms.

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-GNAT1 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

GTP-binding proteins (G-proteins)are a family of heterotrimeric proteins that play a critical role in signal transduction by coupling cell surface, 7-transmembrane domain receptors to intracellular signaling pathways including second messenger generation (such as cyclic AMP, calcium and diacylglycerol), protein phosphorylation, ion channel activation, gene induction, cell growth and differentiation. Receptor activation catalyzes the exchange of GTP for GDP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit.

Expand 1 Items
Loading...

Anti-PRKAB1 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

Expand 1 Items
Loading...

Anti-CAB39 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Mouse protein 25 alpha (MO25 alpha, CAB39) is a 40-kDa protein that, together with the STE20-related adaptor-alpha (STRAD alpha) pseudo kinase, forms a regulatory complex capable of stimulating the activity of the LKB1 tumor suppressor protein kinase. The latter is mutated in the inherited Peutz-Jeghers cancer syndrome (PJS). CAB39 binds directly to a conserved Trp-Glu-Phe sequence at the STRAD alpha C terminus, markedly enhancing binding of STRAD alpha to LKB1 and increasing LKB1 catalytic activity. Skeletal muscle contraction results in the phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an upstream kinase (AMPKK). The LKB1-STE-related adaptor (STRAD)-mouse protein 25 (MO25) complex is the major AMPKK in skeletal muscle; however, LKB1-STRAD-MO25 activity is not increased by muscle contraction. This relationship suggests that phosphorylation of AMPK by LKB1-STRAD-MO25 during skeletal muscle contraction may be regulated by allosteric mechanisms.

Expand 1 Items
Loading...
Sort By