Order Entry
Denmark
ContactUsLinkComponent
 

 

Proteins and Peptides

Proteins are used in routine laboratory procedures such as binding enzymes or coupling peptides to carrier proteins. These kits, mixture solutions, and collagen matrices fulfill a myriad of essential laboratory functions for developing relationships between proteins and other cellular components. The stimulating proteins offered have various amino acid arrangements and functions to fulfill any sample manipulation for testing purposes in any field.

Human Recombinant LIF, ACF

Human Recombinant LIF, ACF

Supplier: STEMCELL Technologies

Leukemia inhibitory factor (LIF) is an interleukin 6 class cytokine that regulates a broad variety of developmental functions. After LIF binds to LIF receptor (LIFR), LIFR associates with gp130 and activates JAK/STAT and MAPK signaling (Auernhammer and Melmed; Suman et al.). LIFR activation of STAT3 is essential for maintaining the mouse embryonic stem cell phenotype (Niwa et al.). Produced by the endometrium, LIF plays an important autocrine and paracrine role in implantation by regulating proliferation, invasion, and differentiation of trophoblasts following blastocyst attachment (Auernhammer and Melmed; Suman et al.). Human LIF can be used for the maintenance of mouse embryonic stem cells, however mouse LIF cannot bind to the human receptor, thus rendering mouse LIF inactive (Dahéron et al.). LIF is produced by CD4+ and activated regulatory T cells, and promotes Foxp3 expression, while repressing Th17 lineage-specific genes (Metcalfe). LIF is also secreted by mesenchymal stromal cells, where it supports hematopoiesis and immune modulation (Nasef et al.). This product is animal component-free.

Expand 3 Items
 
Human Recombinant IFN-gamma, ACF

Human Recombinant IFN-gamma, ACF

Supplier: STEMCELL Technologies

Interferon-gamma (IFN-γ), also known as type II interferon, is produced by T and NK cells, and in smaller amounts by dendritic cells and macrophages. IFN-γ is controlled by cytokines such as IL-12 and IL-18 secreted in response to infection (Schroder et al.). IFN-γ binds to a receptor complex and initiates signal transduction via the JAK/STAT pathway; this culminates in the transcription and activation of many genes that control a diverse array of immunological functions (de Weerd and Nguyen; Krause et al.). IFN-γ stimulates the antimicrobial and anti-tumor activity of macrophages, NK cells, and neutrophils (Billiau and Matthys) by promoting the activation of microbial effector functions such as production of reactive oxygen species, NO intermediates, and complement (Schroder et al.). IFN-γ enhances MHC class I and II expression in dendritic cells and mononuclear phagocytes, as well as the production of IL-12 by dendritic cells. In B cells, IFN-γ stimulates survival and growth in both mouse and human cells, and redirects B cells from proliferation towards differentiation. IFN-γ favors the development of Th1 vs Th2 cells and stimulates monocyte differentiation and function (Schroder et al.). This product is animal component-free.

Expand 2 Items
 
Human Recombinant PDGF-AA

Human Recombinant PDGF-AA

Supplier: STEMCELL Technologies

Platelet-derived growth factor (PDGF) is a dimeric glycoprotein consisting of two disulfide bridge-stabilized polypeptide chains, A and B, which are assembled as heterodimers (PDGF-AB) or homodimers (PDGF-AA and PDGF-BB) (Fretto et al.; Westermark and Heldin). PDGF signals through the receptor tyrosine kinases PDGFRalpha and PDGFRbeta. It has been shown that PDGF-induced migration involves signaling pathways involving MEK/ERK, EGFR, Src, and PI3K/AKT (Kim et al.). PDGF is a potent mitogen for cells of mesenchymal origin, such as fibroblasts, glial cells, and vascular smooth muscle cells. PDGF has been implicated in pathogenesis of atherosclerosis, glomerulonephritis, cancer, and in the contraction of vascular smooth muscle cells of rat aortic tissues (Fretto et al.; Sachinidis et al.). It has been suggested that PDGF-AA is an important autocrine regulator of vascular endothelial growth factor (VEGF) expression in non-small cell lung carcinomas (Shikada et al.). PDGF-AA also mediates proliferation of oligodendrocyte progenitor cells and oligodendrocyte lineage differentiation through the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) (Hu et al.). PDGF-AA is commonly used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into oligodendrocyte precursor cells (Piao et al.).

Expand 3 Items
 
Mouse Recombinant SCF (E. coli-expressed)

Mouse Recombinant SCF (E. coli-expressed)

Supplier: STEMCELL Technologies

Stem cell factor (SCF) is an early-acting cytokine that plays a pivotal role in the regulation of embryonic and adult hematopoiesis. SCF promotes cell survival, proliferation, differentiation, adhesion, and functional activation of cells at multiple levels of the hematopoietic hierarchy. Together with other cytokines such as thrombopoietin and Flt3/Flk-2 Ligand, SCF is commonly used to promote expansion of primitive hematopoietic stem cells and multi-potent progenitor cells in culture (Huang et al.; Kent et al.). In synergy with various growth factors, including IL-2, IL-3, IL-6, IL-7, G-CSF, and erythropoietin, SCF increases proliferation and differentiation of myeloid and erythroid progenitor cells and a subset of lymphoid progenitor cells (Broudy). In the mouse, SCF is essential during fetal gonadal development (Mauduit). It is produced by stromal cells in the fetal liver, bone marrow, and thymus, in the central nervous system, in keratinocytes, and in the gut mucosa, and can function as a chemotactic and chemokinetic factor. SCF exists in two biologically active splice forms: a soluble and a transmembrane isoform. Upon binding to its receptor (c-kit tyrosine kinase receptor; CD117), it activates PI3K, JAK/STAT, and MAPK pathways. SCF and signaling from c-kit has also been reported to play an important role in pigmentation, fertility, vasculogenesis, motility of the gut via c-kit-positive interstitial cells of Cajal, and in the migration of neuronal stem and progenitor cells to sites of injury in the brain (Lennartsson and Ronnstrand).

Expand 4 Items
 
Human Recombinant CNTF, ACF

Human Recombinant CNTF, ACF

Supplier: STEMCELL Technologies

Ciliary neurotrophic factor (CNTF) is a neurotrophic factor that belongs to the four-helix bundle cytokine family and is structurally related to interleukin 6 (IL-6), interleukin 11 (IL-11), leukemia inhibitory factor (LIF), and oncostatin M (OSM). CNTF binds to its receptor CNFTRα and induces formation of a heterodimer of the signal transducing IL-6 receptor gp130 and LIF receptor (LIFR)-β, which triggers JAK/STAT, ERK, and PI3K signaling cascades (Schuster et al.). CNTF plays an important role in neurogenesis and the differentiation of neural stem cells and has been suggested to possess a therapeutic role in treating neurological disorders (Ding et al.; Oppenheim et al.). CNTF has also been shown to protect rod photoreceptors from light-induced damage and have therapeutic effects on retinal degenerative diseases caused by genetic defect or damage induced by toxins, autoantibodies, or strong light (Pernet et al.; Rhee et al.). Another therapeutic role of CNTF has been reported in protecting oligodendrocytes from death induced by apoptosis (Louis et al.). Additionally, CNTF is commonly used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into astrocytes (Krencik and Zhang). This product is animal component-free.

Expand 3 Items
 
Human Recombinant IL-11

Human Recombinant IL-11

Supplier: STEMCELL Technologies

Interleukin 11 (IL-11) is a pleiotropic cytokine with effects on various tissues including the bone marrow, brain, and intestinal mucosa (Du andamp; Williams). It belongs to the IL-6 family of cytokines that share a common signal transducer, gp130. IL-11 induces the proliferation of hematopoietic stem cells (Lemoli et al.) and megakaryocytic progenitor cells (Bruno et al.), the maturation of megakaryocytes (Burstein et al.), and the production of platelets (Neben et al.). IL-11 is produced by a variety of cell types including hematopoietic cells, mesenchymal cells, epithelial cells, and neuronal cells. It was first cloned from a cDNA library of the human bone marrow-derived stromal cell line KM-102 (Kawashima et al.). The binding of IL-11 to its receptor induces heterodimerization with the gp130 subunit and activation of JAK tyrosine kinases. IL-11 was the first pharmacologic agent approved for the treatment of chemotherapy-induced thrombocytopenia. IL-11 also plays a role in cancer progression by inducing the proliferation of epithelial cancer cells and the survival of metastatic cells at distant organs. Recently, IL-11 has gained interest for its role in the pathogenesis of diseases in dysregulated mucosal homeostasis associated with STAT3 upregulation, including gastrointestinal cancers (Putoczki et al.).

Expand 3 Items
 
Human Recombinant Flt3/Flk-2 Ligand, ACF

Human Recombinant Flt3/Flk-2 Ligand, ACF

Supplier: STEMCELL Technologies

Flt3/Flk-2 (Fms-like tyrosine kinase 3/fetal liver kinase-2) Ligand is a hematopoietic cytokine that plays an important role as a co-stimulatory factor in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells and the development of the immune system (Hannum et al.). Flt3/Flk-2 Ligand, together with stem cell factor and thrombopoietin, is commonly used to promote expansion of primitive CD34+ hematopoietic cells in culture. In combination with myeloid cytokines such as GM-CSF, G-CSF, or M-CSF, Flt3/Flk-2 Ligand enhances the growth and numbers of clonogenic myeloid progenitor cells. In synergy with the interleukins IL-3, IL-4, IL-7, IL-11, IL-12, IL-15, and GM-CSF and TNF-α, Flt3/Flk-2 Ligand regulates the development of various lymphoid progenitor cells, including dendritic cell, B cell, T cell, and NK cell progenitors. In contrast, Flt3/Flk-2 Ligand has no significant effect on erythropoiesis or megakaryopoiesis (Drexler and Quentmeier; Wodnar-Filipowicz). Flt3/Flk-2 Ligand exists as membrane-bound and soluble isoforms. Both isoforms are biologically active and signal through the class III tyrosine kinase receptor (Flt3/Flk-2, CD135; Rosnet et al.). Flt3/Flk-2 Ligand is produced by a variety of cell types, including uncommitted and committed hematopoietic cells and stromal fibroblasts, whereas expression of the Flt3/Flk-2 receptor is restricted to CD34+ hematopoietic stem and progenitor cells. Flt3/Flk-2 receptor is also expressed on leukemic cells and outside the hematopoietic system in the brain, placenta, and testis (Drexler and Quentmeier; Hannum et al.). This product is animal component-free.

Expand 3 Items
 
Human Recombinant Flt3/Flk-2 Ligand (E. coli expressed)

Human Recombinant Flt3/Flk-2 Ligand (E. coli expressed)

Supplier: STEMCELL Technologies

Flt3/Flk-2 (Fms-like tyrosine kinase 3/fetal liver kinase-2) Ligand is a hematopoietic cytokine that plays an important role as a co-stimulatory factor in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells and in the development of the immune system (Hannum et al.). Flt3/Flk-2 Ligand, together with stem cell factor and thrombopoietin, is commonly used to promote expansion of primitive CD34+ hematopoietic cells in culture. In combination with myeloid cytokines such as GM-CSF, G-CSF, or M-CSF, Flt3/Flk-2 Ligand enhances the growth and numbers of clonogenic myeloid progenitor cells. In synergy with the interleukins IL-3, IL-4, IL-7, IL-11, IL-12, IL-15, and GM-CSF and TNF-α, Flt3/Flk-2 Ligand regulates the development of various lymphoid progenitor cells, including dendritic cell, B cell, T cell, and NK cell progenitors. In contrast, Flt3/Flk-2 Ligand has no significant effect on erythropoiesis or megakaryopoiesis (Drexler andamp; Quentmeier; Wodnar-Filipowicz). Flt3/Flk-2 Ligand exists as membrane-bound and soluble isoforms. Both isoforms are biologically active and signal through the class III tyrosine kinase receptor (Flt3/Flk-2, CD135; Rosnet et al.). Flt3/Flk-2 Ligand is produced by a variety of cell types, including uncommitted and committed hematopoietic cells and stromal fibroblasts, whereas expression of the Flt3/Flk-2 receptor is restricted to CD34+ hematopoietic stem and progenitor cells. Flt3/Flk-2 receptor is also expressed on leukemic cells and outside the hematopoietic system in the brain, placenta, and testis (Drexler andamp; Quentmeier; Hannum et al.).

Expand 4 Items
 
Recommended for You