59085 Results for: "2-Amino-4-chlorophenol&"
Anti-PRKACG Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
PKA (or cAPK) is a cyclic AMP dependent protein kinase. When activated by the second messenger cAMP, PKA mediates diverse cellular mechanisms, including proliferation, ion transport, regulation of metabolism, plus gene transcription. PKA is comprised of two dimers of two subunits, R (regulatory) and C (catalytic). Two families of R subunit (RI and RII) and three C subunit isoforms (C alpha, C beta, and C gamma) have been identified each possessing distinct cAMP binding properties and resulting in different phosphorylation states. C subunit is activated through autophosphorylation and direct phosphorylation at Thr197 by PDK-1. Tissue specific expression of C gamma, indicates pressure on C gamma during evolution, acting to modulate it in a functionally specific way. Certain amino acid substitutions make C gamma a distinct member of the cAMP dependent subfamily of protein kinases, and suggest that C gamma may be distinct in its protein substrate specificity or its interaction with the different regulatory subunits.
Expand 1 Items
Anti-PRKACG Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
PKA (or cAPK) is a cyclic AMP dependent protein kinase. When activated by the second messenger cAMP, PKA mediates diverse cellular mechanisms, including proliferation, ion transport, regulation of metabolism, plus gene transcription. PKA is comprised of two dimers of two subunits, R (regulatory) and C (catalytic). Two families of R subunit (RI and RII) and three C subunit isoforms (C alpha, C beta, and C gamma) have been identified each possessing distinct cAMP binding properties and resulting in different phosphorylation states. C subunit is activated through autophosphorylation and direct phosphorylation at Thr197 by PDK-1. Tissue specific expression of C gamma, indicates pressure on C gamma during evolution, acting to modulate it in a functionally specific way. Certain amino acid substitutions make C gamma a distinct member of the cAMP dependent subfamily of protein kinases, and suggest that C gamma may be distinct in its protein substrate specificity or its interaction with the different regulatory subunits.
Expand 1 Items
Anti-PRKACG Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
PKA (or cAPK) is a cyclic AMP dependent protein kinase. When activated by the second messenger cAMP, PKA mediates diverse cellular mechanisms, including proliferation, ion transport, regulation of metabolism, plus gene transcription. PKA is comprised of two dimers of two subunits, R (regulatory) and C (catalytic). Two families of R subunit (RI and RII) and three C subunit isoforms (C alpha, C beta, and C gamma) have been identified each possessing distinct cAMP binding properties and resulting in different phosphorylation states. C subunit is activated through autophosphorylation and direct phosphorylation at Thr197 by PDK-1. Tissue specific expression of C gamma, indicates pressure on C gamma during evolution, acting to modulate it in a functionally specific way. Certain amino acid substitutions make C gamma a distinct member of the cAMP dependent subfamily of protein kinases, and suggest that C gamma may be distinct in its protein substrate specificity or its interaction with the different regulatory subunits.
Expand 1 Items
Anti-PRKACG Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
PKA (or cAPK) is a cyclic AMP dependent protein kinase. When activated by the second messenger cAMP, PKA mediates diverse cellular mechanisms, including proliferation, ion transport, regulation of metabolism, plus gene transcription. PKA is comprised of two dimers of two subunits, R (regulatory) and C (catalytic). Two families of R subunit (RI and RII) and three C subunit isoforms (C alpha, C beta, and C gamma) have been identified each possessing distinct cAMP binding properties and resulting in different phosphorylation states. C subunit is activated through autophosphorylation and direct phosphorylation at Thr197 by PDK-1. Tissue specific expression of C gamma, indicates pressure on C gamma during evolution, acting to modulate it in a functionally specific way. Certain amino acid substitutions make C gamma a distinct member of the cAMP dependent subfamily of protein kinases, and suggest that C gamma may be distinct in its protein substrate specificity or its interaction with the different regulatory subunits.
Expand 1 Items
Bromochlorophenol blue 95% (dye content), Sigma-Aldrich®
Supplier: SIGMA ALDRICH MICROSCOPY
Bromochlorophenol blue 95% (dye content), Sigma-Aldrich®
Expand 1 Items
Anti-PKA gamma Rabbit Polyclonal Antibody (Alexa Fluor® 680)
Supplier: Bioss
PKA (or cAPK) is a cyclic AMP dependent protein kinase. When activated by the second messenger cAMP, PKA mediates diverse cellular mechanisms, including proliferation, ion transport, regulation of metabolism, plus gene transcription. PKA is comprised of two dimers of two subunits, R (regulatory) and C (catalytic). Two families of R subunit (RI and RII) and three C subunit isoforms (C alpha, C beta, and C gamma) have been identified each possessing distinct cAMP binding properties and resulting in different phosphorylation states. C subunit is activated through autophosphorylation and direct phosphorylation at Thr197 by PDK-1. Tissue specific expression of C gamma, indicates pressure on C gamma during evolution, acting to modulate it in a functionally specific way. Certain amino acid substitutions make C gamma a distinct member of the cAMP dependent subfamily of protein kinases, and suggest that C gamma may be distinct in its protein substrate specificity or its interaction with the different regulatory subunits.
Expand 1 Items
Anti-PRKACG Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
PKA (or cAPK) is a cyclic AMP dependent protein kinase. When activated by the second messenger cAMP, PKA mediates diverse cellular mechanisms, including proliferation, ion transport, regulation of metabolism, plus gene transcription. PKA is comprised of two dimers of two subunits, R (regulatory) and C (catalytic). Two families of R subunit (RI and RII) and three C subunit isoforms (C alpha, C beta, and C gamma) have been identified each possessing distinct cAMP binding properties and resulting in different phosphorylation states. C subunit is activated through autophosphorylation and direct phosphorylation at Thr197 by PDK-1. Tissue specific expression of C gamma, indicates pressure on C gamma during evolution, acting to modulate it in a functionally specific way. Certain amino acid substitutions make C gamma a distinct member of the cAMP dependent subfamily of protein kinases, and suggest that C gamma may be distinct in its protein substrate specificity or its interaction with the different regulatory subunits.
Expand 1 Items
Adenosine-3',5'-cyclic monophosphate (cAMP) 98%
Supplier: Thermo Fisher Scientific
Adenosine-3',5'-cyclic monophosphate (cAMP) 98%
Expand 2 Items
2-Chloro-6-(trifluoromethyl)phenol
Supplier: Apollo Scientific
2-Chloro-6-(trifluoromethyl)phenol
Expand 1 Items
Adenosine-3',5'-cyclic monophosphate sodium salt ≥98.0% (by HPLC)
Supplier: TCI
Adenosine-3',5'-cyclic monophosphate sodium salt ≥98.0% (by HPLC)
Expand 1 Items
Adenosine-3',5'-cyclic monophosphate sodium salt 99%
Supplier: Thermo Fisher Scientific
Adenosine-3',5'-cyclic monophosphate sodium salt 99%
Expand 3 Items
Adenosine-3',5'-cyclic monophosphate (cAMP) ≥99.0% (by HPLC)
Supplier: TCI
Adenosine-3',5'-cyclic monophosphate (cAMP) ≥99.0% (by HPLC)
Expand 2 Items
2-Chloro-4-hydroxybenzoic acid hydrate 98+%
Supplier: Apollo Scientific
2-Chloro-4-hydroxybenzoic acid hydrate 98+%
Expand 2 Items
2-Chloro-4-hydroxybenzoic acid hydrate 98%
Supplier: Thermo Fisher Scientific
2-Chloro-4-hydroxybenzoic acid hydrate 98%
Expand 2 Items
2-Acrylamido-2-methylpropanesulphonic acid, Sigma-Aldrich®
Supplier: Merck
2-Acrylamido-2-methylpropanesulphonic acid, Sigma-Aldrich®
Expand 2 Items
Anti-AVPR1B Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).
Expand 1 Items
Anti-AVPR1B Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).
Expand 1 Items
Anti-AVPR1B Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).
Expand 1 Items
Anti-AVPR1B Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).
Expand 1 Items
Anti-AVPR1B Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).
Expand 1 Items
Anti-AVPR1B Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).
Expand 1 Items
Anti-AVPR1B/AVP Receptor V3 Rabbit Polyclonal Antibody (Alexa Fluor® 750)
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterised by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumours (2).
Expand 1 Items
Anti-AVPR1B Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).
Expand 1 Items
Anti-AVPR1B Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).
Expand 1 Items
Anti-AVPR1B Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).
Expand 1 Items
Anti-AVPR1B/AVP Receptor V3 Rabbit Polyclonal Antibody (Alexa Fluor® 680)
Supplier: Bioss
Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterised by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumours (2).