45416 Results for: "L-beta-Homoproline+hydrochloride"
Anti-PKCB Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity. Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A. In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. May participate in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4.
Expand 1 Items
Anti-PKCB Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity. Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A. In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. May participate in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4.
Expand 1 Items
Anti-PKCB Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity. Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A. In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. May participate in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4.
Expand 1 Items
Anti-PKCB Rabbit Polyclonal Antibody (Cy5.5®)
Supplier: Bioss
Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity. Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A. In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. May participate in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4.
Expand 1 Items
Anti-PKCB Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity. Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A. In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. May participate in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4.
Expand 1 Items
Anti-PKCB Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity. Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A. In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. May participate in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4.
Expand 1 Items
Anti-RXRB Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
RXRB is a member of the retinoid X receptor (RXR) family of nuclear receptors which are involved in mediating the effects of retinoic acid (RA). This receptor forms homodimers with the retinoic acid, thyroid hormone, and vitamin D receptors, increasing both DNA binding and transcriptional function on their respective response elements. This gene encodes a member of the retinoid X receptor (RXR) family of nuclear receptors which are involved in mediating the effects of retinoic acid (RA). This receptor forms homodimers with the retinoic acid, thyroid hormone, and vitamin D receptors, increasing both DNA binding and transcriptional function on their respective response elements. The gene lies within the major histocompatibility complex (MHC) class II region on chromosome 6. An alternatively spliced transcript variant has been described, but its full length sequence has not been determined. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.This gene encodes a member of the retinoid X receptor (RXR) family of nuclear receptors which are involved in mediating the effects of retinoic acid (RA). This receptor forms homodimers with the retinoic acid, thyroid hormone, and vitamin D receptors, increasing both DNA binding and transcriptional function on their respective response elements. The gene lies within the major histocompatibility complex (MHC) class II region on chromosome 6. An alternatively spliced transcript variant has been described, but its full length sequence has not been determined. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.
Expand 1 Items
Anti-RXRB Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
RXRB is a member of the retinoid X receptor (RXR) family of nuclear receptors which are involved in mediating the effects of retinoic acid (RA). This receptor forms homodimers with the retinoic acid, thyroid hormone, and vitamin D receptors, increasing both DNA binding and transcriptional function on their respective response elements. This gene encodes a member of the retinoid X receptor (RXR) family of nuclear receptors which are involved in mediating the effects of retinoic acid (RA). This receptor forms homodimers with the retinoic acid, thyroid hormone, and vitamin D receptors, increasing both DNA binding and transcriptional function on their respective response elements. The gene lies within the major histocompatibility complex (MHC) class II region on chromosome 6. An alternatively spliced transcript variant has been described, but its full length sequence has not been determined. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.This gene encodes a member of the retinoid X receptor (RXR) family of nuclear receptors which are involved in mediating the effects of retinoic acid (RA). This receptor forms homodimers with the retinoic acid, thyroid hormone, and vitamin D receptors, increasing both DNA binding and transcriptional function on their respective response elements. The gene lies within the major histocompatibility complex (MHC) class II region on chromosome 6. An alternatively spliced transcript variant has been described, but its full length sequence has not been determined. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.
Expand 1 Items
Anti-B4GALT7 Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.
Expand 1 Items
Anti-B4GALT7 Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.
Expand 1 Items
Anti-B4GALT7 Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.
Expand 1 Items
Anti-B4GALT7 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.
Expand 1 Items
Anti-B4GALT7 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.
Expand 1 Items
Anti-B4GALT7 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.
Expand 1 Items
1-(3-CHLOROPHENYL)PIPERAZINE HYDROCHLORI DE 1 * 25 g
Supplier: Merck
1-(3-CHLOROPHENYL)PIPERAZINE HYDROCHLORI DE 1 * 25 g
Expand 1 Items
1-(3-CHLOROPHENYL)PIPERAZINE HYDROCHLORI DE 1 * 5 g
Supplier: Merck
1-(3-CHLOROPHENYL)PIPERAZINE HYDROCHLORI DE 1 * 5 g
Expand 1 Items
N-A-BENZOYL-DL-ARGININE-P-NITROANILIDEHY DROCHLORID 1 * 1 g
Supplier: Merck
N-A-BENZOYL-DL-ARGININE-P-NITROANILIDEHY DROCHLORID 1 * 1 g
Expand 1 Items
9 COMPONENTS MIX 1 * 2 Ampoul
Supplier: CUSTOM MADE CHEMICALS LAB
9 COMPONENTS MIX 1 * 2 Ampoul
Expand 1 Items
B-CAROTENE TYPE II SYNTHETIC 1 * 5 mg
Supplier: Merck
B-CAROTENE TYPE II SYNTHETIC 1 * 5 mg
Expand 1 Items
N-BENZOYL-PHE-VAL-ARG P-NITROANILIDEHYDR OCHLORIDE 1 * 10 mg
Supplier: Merck
N-BENZOYL-PHE-VAL-ARG P-NITROANILIDEHYDR OCHLORIDE 1 * 10 mg
Expand 1 Items
10 COMPONENTS MIX 1 * 5 Ampoul
Supplier: CUSTOM MADE CHEMICALS LAB
10 COMPONENTS MIX 1 * 5 Ampoul
Expand 1 Items
56 COMPONENTS MIX 1 * 5 Ampoul
Supplier: CUSTOM MADE CHEMICALS LAB
56 COMPONENTS MIX 1 * 5 Ampoul
Expand 1 Items
39 COMPONENTS MIX 1 * 5 Ampoul
Supplier: CUSTOM MADE CHEMICALS LAB
39 COMPONENTS MIX 1 * 5 Ampoul
Expand 1 Items
Integrin beta2 (P4H9) mouse monoclonal IgG3 200 µg/ml raised against activated T lymphocytes 1 * 1 mL
Supplier: Santa Cruz Biotechnology
Integrin beta2 (P4H9) mouse monoclonal IgG3 200 µg/ml raised against activated T lymphocytes 1 * 1 mL
Expand 1 Items
NA-CBZ-ARG-ARG 7-AMIDO-4-METHYLCOUMARIN HYDROCHLORI 1 * 25 mg
Supplier: Merck
NA-CBZ-ARG-ARG 7-AMIDO-4-METHYLCOUMARIN HYDROCHLORI 1 * 25 mg