80106 Résultats pour : "Flame Ionization Detector (FID) Supplies"
Anti-MTOR Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Kinase subunit of both mTORC1 and mTORC2, which regulate cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino-acids. Amino-acid-signaling to mTORC1 is mediated by Rag GTPases, which cause amino-acid-induced relocalization of mTOR within the endomembrane system. Growth factor-stimulated mTORC1 activation involves AKT1-mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase that potently activates the protein kinase activity of mTORC1. Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. mTORC1 phosphorylates EIF4EBP1 and releases it from inhibiting the elongation initiation factor 4E (eiF4E). mTORC1 phosphorylates and activates S6K1 at 'Thr-421', which then promotes protein synthesis by phosphorylating PDCD4 and targeting it for degradation. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors. mTORC2 promotes the serum-induced formation of stress-fibers or F-actin. mTORC2 plays a critical role in AKT1 'Ser-473' phosphorylation, which may facilitate the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDK1 which is a prerequisite for full activation. mTORC2 regulates the phosphorylation of SGK1 at 'Ser-422'. mTORC2 also modulates the phosphorylation of PRKCA on 'Ser-657'.
Expand 1 Items
Anti-LCK Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosines residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, the microtubule-associated protein MAPT, RHOH or TYROBP.
Expand 1 Items
Electroelution device for extracting nucleic acids and proteins, GeneCAPSULE™ (G-CAPSULE™)
Supplier: G-Biosciences
G-Biosciences' GeneCAPSULE™ is an electro-elution tool for rapid, nearly 90% recovery of PCR products, DNA fragments and proteins from agarose and polyacrylamide gels
Expand 1 Items
Anti-KRT10 Mouse Monoclonal Antibody [clone: AE1]
Supplier: ProSci Inc.
Cytokeratins, also called keratins or simply CKs, are a family of fibrous structural proteins and a major structural component in the outer layer of human skin, as well as hair and nails. There are 20 human epithelial keratins which can be divided into two subfamiles: acidic and basic (more recent human genone sequencing has identified an additional 20 members). The formation of cytokeratin intermediate filaments requires the pairing of at least one acidic and one basic subfamily member. Members of the same keratin subfamily share extended sequence homology while members of different subfamilies show only limited sequence homology.
This antibody is specific for the 56.5 kDa (CK10), 50 kDa (CK14), 50 kDa (CK15), 48 kDa (CK16), and 40 kDa (CK19) keratins of the acidic (Type I or LMW) subfamily. Many studies have shown the usefulness of CKs as markers in cancer research and tumor diagnosis, as epithelial tumors generally maintain the same CK expression patterns as their counterpart normal tissue. Clone AE1 is commonly used with clone AE3 as a pan cytokeratin antibody cocktail (Cat No V2330).
Expand 1 Items
Anti-KRT1, KRT3, KRT4, KRT5, KRT6A, KRT8, KRT10, KRT14, KRT15, KRT16, KRT19 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Twenty human keratins are resolved with two-dimensional gel electrophoresis into acidic (pI 6.0) subfamilies. This antibody detects acidic (Type I or LMW) and basic (Type II or HMW) cytokeratins: 67 kDa (CK1); 64 kDa (CK3); 59 kDa (CK4); 58 kDa (CK5); 56 kDa (CK6); 52 kDa (CK8); 56.5 kDa (CK10); 50 kDa (CK14); 50 kDa (CK15); 48 kDa (CK16); 40 kDa (CK19). Many studies have shown the usefulness of keratins as markers in cancer research and tumor diagnosis. It is a broad spectrum anti pan-cytokeratin antibody, which differentiates epithelial tumors from non-epithelial tumors e.g. squamous vs. adenocarcinoma of the lung, liver carcinoma, breast cancer, and esophageal cancer. It may be useful to characterize the source of various neoplasms and to study the distribution of cytokeratin containing cells in epithelia during normal development and during the development of epithelial neoplasms. This antibody stains cytokeratins present in normal and abnormal human tissues and has high sensitivity in the recognition of epithelial cells and carcinomas.
Expand 1 Items
DNA purification kits, Geneclean® kit, MP Biomedicals
Supplier: MP Biomedicals
The GeneClean® Kit is designed to purify fragments of DNA from 200 bp to 20 kb from solutions and agarose gels.
Expand 1 Items
Orion Star™ A326 Multi-Parameter Meter (pH/RDO/DO), Handheld
Supplier: Thermo Orion
This rugged, waterproof portable meter is designed for a wide range of pH, mV, ORP, dissolved oxygen and temperature testing and field applications. It can be used in the most demanding locations thanks to its IP67-rated housing. The meter offers two measuring channels allowing users to measure pH and dissolved oxygen simultaneously or view each channel separately.
Expand 2 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex.
Expand 1 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex
Expand 1 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex
Expand 1 Items
Multi-parameter meter (pH/mV/DO), bench, Orion Star™ A216
Supplier: Thermo Orion
This benchtop meter is ideal for a wide range of applications and advanced pH and dissolved oxygen analysis in the lab. It offers two measuring channels allowing users to measure pH and dissolved oxygen simultaneously or view each channel separately. Can be used with RDO optical or polarographic DO probes.
Expand 2 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex
Expand 1 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex
Expand 1 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex.
Expand 1 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex
Expand 1 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex
Expand 1 Items
Anti-GLG1 Mouse Monoclonal Antibody [clone: GLG1/970]
Supplier: ProSci Inc.
This mAb recognises a protein of 134 kDa, which binds fibroblast growth factor and E-selectin (cell-adhesion lectin on endothelial cells mediating the binding of neutrophils). Fucosylation is essential for binding to E-selectin. It contains sialic acid residues and 16 Cys-rich GLG1 repeats. This mAb can be used to stain the Golgi complex in cell or tissue preparations and can be used as a Golgi marker in subcellular fractions. It produces a diffuse staining pattern of the Golgi zone in normal and malignant cells. This mAb is an excellent marker for human cells in xenographic model research. It reacts specifically with human cells. The Golgi apparatus is an organelle present in all eukaryotic cells that forms a part of the endomembrane system. The primary function of the Golgi apparatus is to process and package macromolecules synthesised by the cell for exocytosis or use within the cell. The Golgi is made up of a stack of flattened, membrane-bound sacs known as cisternae, with three functional regions: the cis face, medial region and trans face. Each region consists of various enzymes that selectively modify the macromolecules passing though them, depending on where they are destined to reside. Several spherical vesicles that have budded off of the Golgi are present surrounding the main cisternae. The Golgi tends to be more pronounced and numerous in cells that make and secrete many substances such as plasma B cells.
Expand 1 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex
Expand 1 Items
Anti-RELA Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
NF-κ-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-κ-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-κ-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-κ-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-κ-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-κ-B complex which translocates to the nucleus. NF-κ-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-κ-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-κ-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-κ-B complex
Expand 1 Items
Anti-KRT17 Mouse Monoclonal Antibody [clone: SPM560]
Supplier: ProSci Inc.
Cytokeratin 17 (CK17) is a member of the Cytokeratin subfamily of intermediate filament proteins (IF's). It is unique in that it is normally expressed in the basal cells of complex epithelia but not in stratified or simple epithelia. CK17 is expressed in the nail bed, hair follicle, sebaceous glands and other epidermal appendages. Antibody to CK17 is an excellent tool to distinguish myoepithelial cells from luminal epithelium of various glands such as mammary, sweat and salivary. CK17 is expressed in epithelial cells of various origins, such as bronchial epithelial cells and skin appendages. It may be considered an epithelial stem cell marker because CK17 Ab marks basal cell differentiation. CK17 can be useful when included in a panel of antibodies against TTF-1, napsin A, CK5&6, p63, and SOX-2 for diagnostic differentiation between lung adenocarcinoma (LADC) and lung squamous cell carcinoma (SCLC), especially for poorly-differentiated lung carcinoma. CK17 is expressed in SCLC much higher than in LADC. In breast carcinomas, approximately 20% of patients show no expression of ER, PR and Her2, which are defined as triple negative tumor. Eighty-five percent of the triple negative breast carcinomas immunoreact with basal cytokeratins including anti-CK17. Also important is that cases of triple negative breast carcinoma with expression of CK17 show an aggressive clinical course. The histologic differentiation of ampullary cancer, intestinal vs. pancreatobiliary, is very important for treatment. Usually anti-CK17 and anti-MUC1 immunoreactivity represents pancreatobiliary subtype whereas anti-MUC2 and anti-CDX-2 positivity defines intestinal subtype.
Expand 1 Items
Genomic DNA purification kits, Fast DNA™ kit, MP Biomedicals
Supplier: MP Biomedicals
The FastDNA™ Kit quickly and efficiently isolates high quality genomic DNA from plants, animals, bacteria, yeast, algae, and fungi using a silica spin filter method. It can be used with the FastPrep®-24 or FastPrep® FP120 instrument to lyse and subsequently isolate DNA from up to 200 mg of almost any sample in less than 30 minutes.
Expand 1 Items
Anti-ITGB1 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Integrins alpha-1/beta-1, alpha-2/beta-1, alpha-10/beta-1 and alpha-11/beta-1 are receptors for collagen. Integrins alpha-1/beta-1 and alpha-2/beta-2 recognize the proline-hydroxylated sequence G-F-P-G-E-R in collagen. Integrins alpha-2/beta-1, alpha-3/beta-1, alpha-4/beta-1, alpha-5/beta-1, alpha-8/beta-1, alpha-10/beta-1, alpha-11/beta-1 and alpha-V/beta-1 are receptors for fibronectin. Alpha-4/beta-1 recognizes one or more domains within the alternatively spliced CS-1 and CS-5 regions of fibronectin. Integrin alpha-5/beta-1 is a receptor for fibrinogen. Integrin alpha-1/beta-1, alpha-2/beta-1, alpha-6/beta-1 and alpha-7/beta-1 are receptors for lamimin. Integrin alpha-4/beta-1 is a receptor for VCAM1. It recognizes the sequence Q-I-D-S in VCAM1. Integrin alpha-9/beta-1 is a receptor for VCAM1, cytotactin and osteopontin. It recognizes the sequence A-E-I-D-G-I-E-L in cytotactin. Integrin alpha-3/beta-1 is a receptor for epiligrin, thrombospondin and CSPG4. Alpha-3/beta-1 may mediate with LGALS3 the stimulation by CSPG4 of endothelial cells migration. Integrin alpha-V/beta-1 is a receptor for vitronectin. Beta-1 integrins recognize the sequence R-G-D in a wide array of ligands. Isoform beta-1B interferes with isoform beta-1A resulting in a dominant negative effect on cell adhesion and migration (in vitro). In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. When associated with alpha-7/beta-1 integrin, regulates cell adhesion and laminin matrix deposition. Involved in promoting endothelial cell motility and angiogenesis. May be involved in up-regulation of the activity of kinases such as PKC via binding to KRT1. Together with KRT1 and GNB2L1/RACK1, serves as a platform for SRC activation or inactivation. Plays a mechanistic adhesive role during telophase, required for the successful completion of cytokinesis
Expand 1 Items
SPINeasy DNA/RNA/protein all in one kit, 50 preparations, MP Biomedicals
Supplier: MP Biomedicals
Quick and efficient isolation of DNA, RNA and protein from the same sample using spin column technology.
Expand 1 Items
pH/mV/ISE/°C meters, bench top, Orion Star™ A214
Supplier: Thermo Orion
These bench top meters record accurate and reliable pH, ion concentration, mV, ORP and temperature measurements. They are ideal for a wide range of applications and advanced pH or ion analysis in the lab.
Expand 5 Items
Orion Star™ A329 Multi-Parameter Meter (pH/ISE/Conductivity/DO), Handheld
Supplier: Thermo Orion
This rugged, waterproof portable meter is designed for a wide range of pH, ion concentration, conductivity, dissolved oxygen and temperature testing and field applications. It can be used in the most demanding locations thanks to its IP67-rated housing. The meter offers three measuring channels allowing users to measure pH, conductivity and DO simultaneously or view each channel separately.
Expand 2 Items
Fast DNA™ SPIN kit, MP Biomedicals
Supplier: MP Biomedicals
The Fast DNA® SPIN Kit is used with the FastPrep®-24 or FastPrep® FP120 instrument to lyse and subsequently isolate DNA from up to 200 mg of almost any sample in less than 30 minutes.
Expand 1 Items
pH/mV/°C/ISE meter, bench, Orion™ Dual Star™
Supplier: Thermo Orion
These bench top meters with two measuring channels are designed for accurate and reliable pH, ion concentration, mV, ORP and temperature measurements. Ideal for high throughput pH and ion analysis in the lab.
Expand 9 Items
pH/mV/°C meters, bench top, Orion™ Versa Star Pro™
Supplier: Thermo Orion
These bench top meters with conductivity module meet most challenging applications for pH, mV, ORP and temperature. The meters offer interchangeable measurement modules that allow multiple users to customise four separate channels to meet their specific requirements.
Expand 2 Items
VWR® PESTINORM®, LC Multiresidue Pesticide Standard (Mix 4) - 63 components, CRM
Supplier: VWR Chemicals
A standard mixture, typically used for food testing, containing the following components: 100 ug/ml each of Abamectin [CAS:71751-41-2] ; Acetamiprid [CAS:135410-20-7] ; Ametryn [CAS:834-12-8] ; Amitraz [CAS:33089-61-1] ; Azoxystrobin [CAS:131860-33-8] ; Benalaxyl [CAS:71626-11-4] ; Benzoximate [CAS:29104-30-1] ; Boscalid [CAS:188425-85-6] ; Butafenacil [CAS:134605-64-4] ; Carbetamide [CAS:16118-49-3] ; Carfentrazone-ethyl [CAS:128639-02-1] ; Chlorantraniliprole [CAS:500008-45-7] ; Clofentezine [CAS:74115-24-5] ; Cymoxanil [CAS:57966-95-7] ; Cyprodinil [CAS:121552-61-2] ; Cyromazine [CAS:66215-27-8] ; Dimoxystrobin [CAS:149961-52-4] ; Dinotefuran [CAS:165252-70-0] ; Doramectin [CAS:117704-25-3] ; Eprinomectin [CAS:123997-26-2] ; Famoxadone [CAS:131807-57-3] ; Fenazaquin [CAS:120928-09-8] ; Fenhexamid [CAS:126833-17-8] ; Fenpyroximate [CAS:111812-58-9] ; Flonicamid [CAS:158062-67-0] ; Fluazinam [CAS:79622-59-6] ; Fludioxonil [CAS:131341-86-1] ; Fluoxastrobin [CAS:361377-29-9] ; Flutolanil [CAS:66332-96-5] ; Furalaxyl [CAS:57646-30-7] ; Halofenozide [CAS:112226-61-6] ; Imazalil [CAS:35554-44-0] ; Imidacloprid [CAS:138261-41-3] ; Ivermectine [CAS:70288-86-7] ; Kresoxim-methyl [CAS:143390-89-0] ; Mandipropamid [CAS:374726-62-2] ; Mepanipyrim [CAS:110235-47-7] ; Mepronil [CAS:55814-41-0] ; Metaflumizone [CAS:139968-49-3] ; Metalaxyl [CAS:57837-19-1] ; Methoxyfenozide [CAS:161050-58-4] ; Moxidectin [CAS:113507-06-5] ; Myclobutanil [CAS:88671-89-0] ; Nitenpyram [CAS:150824-47-8] ; Oxadixyl [CAS:77732-09-3] ; Picoxystrobin [CAS:117428-22-5] ; Piperonyl butoxide [CAS:51-03-6] ; Prochloraz [CAS:67747-09-5] ; Prometon [CAS:1610-18-0] ; Pymetrozine [CAS:123312-89-0] ; Pyracarbolid [CAS:24691-76-7] ; Pyrimethanil [CAS:53112-28-0] ; Pyriproxyfen [CAS:95737-68-1] ; Quinoxyfen [CAS:124495-18-7] ; Rotenone [CAS:83-79-4] ; Secbumeton [CAS:26259-45-0] ; Spiroxamine [CAS:118134-30-8] ; Tebufenozide [CAS:112410-23-8] ; Tebufenpyrad [CAS:119168-77-3] ; Terbumeton [CAS:33693-04-8] ; Triadimefon [CAS:43121-43-3] ; Trifloxystrobin [CAS:141517-21-7] ; Zoxamide [CAS:156052-68-5] in Acetonitrile
Expand 1 Items
Orion™ Versa Star Pro™ pH/mV/ISE Meters, Bench
Supplier: Thermo Orion
These bench top meters with conductivity module meet most challenging applications for pH, ion concentration, mV, ORP and temperature. The meters offer interchangeable measurement modules that allow multiple users to customise four separate channels to meet their specific requirements.