120 Results for: "Carbohydrates and Sugars"
Anti-FPGT Rabbit Polyclonal Antibody
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (Alexa Fluor® 750)
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (Alexa Fluor® 680)
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Anti-FPGT Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.
Expand 1 Items
Sodium periodate, Pierce™
Supplier: Thermo Fisher Scientific
Thermo Scientific Pierce Sodium meta-Periodate is a gentle oxidizing agent that cleaves cis-diols in carbohydrate sugars to create amine-reactive aldehydes, providing many uses relating to the study and detection of glycoproteins.
Expand 1 Items
D-(+)-Sucrose, white crystalline powder ACS
Supplier: MP Biomedicals
Simple carbohydrate. Sucrose is hydrolyzed to glucose and fructose by dilute acids and by invertase, a yeast enzyme. Upon hydrolysis the optical rotation falls and is negative when the hydrolysis is complete. The mixture of glucose and fructose is known as "Invert sugar".
Expand 2 Items
HPLC columns, MetaCarb
Supplier: VARIAN
The MetaCarb™ line of carbohydrate columns provides high resolution columns for applications requiring high performance carbohydrate and organic acid analysis. These columns contain sulfonated polystyrene resins in the Calcium (87C), Hydrogen (87H), and Lead (87P) forms, and provide a wide range of selectivities for carbohydrate and organic analysis. They are widely used in the food and beverage industries for analysis of sweeteners, corn and cane sugars, fruit juices, soft drinks, beer and dairy products.
Expand 31 Items
Anti-FUT11 Rabbit Polyclonal Antibody (Cy7®)
Supplier: Bioss
Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.
Expand 1 Items
Anti-FUT11 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.
Expand 1 Items
Anti-FUT11 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.
Expand 1 Items
Anti-FUT11 Rabbit Polyclonal Antibody
Supplier: Bioss
Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.
Expand 1 Items
Anti-FUT11 Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.
Expand 1 Items
Anti-FUT11 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.
Expand 1 Items
Anti-FUT11 Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.
Expand 1 Items
Anti-FUT11 Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.
Expand 1 Items
Anti-FUT11 Rabbit Polyclonal Antibody (Cy5®)
Supplier: Bioss
Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.
Expand 1 Items
Anti-FUT11 Rabbit Polyclonal Antibody (Cy3®)
Supplier: Bioss
Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.
Expand 1 Items
Affinity coupling media, Epoxy-Activated Sepharose™ 6B
Supplier: Cytiva
Epoxy-activated Sepharose™ 6B is a pre-activated medium for immobilisation of various ligands including sugars through coupling of hydroxy, amino or thiol groups on the ligand to Sepharose™ 6B via a 12-atom hydrophilic spacer arm. Medium is formed by reacting Sepharose™ 6B with 1,4-bis (2,3- epoxy-propoxy-) butane. It can be used to couple sugars and other carbohydrates via stable ether linkages to hydroxyl groups.
Expand 1 Items
Anti-B3GALNT1 Rabbit Polyclonal Antibody (Alexa Fluor® 680)
Supplier: Bioss
This gene is a member of the beta-1,3-galactosyltransferase (beta3GalT) gene family. This family encodes type II membrane-bound glycoproteins with diverse enzymatic functions using different donor substrates (UDP-galactose and UDP-N-acetylglucosamine) and different acceptor sugars (N-acetylglucosamine, galactose, N-acetylgalactosamine). The beta3GalT genes are distantly related to the Drosophila Brainiac gene and have the protein coding sequence contained in a single exon. The beta3GalT proteins also contain conserved sequences not found in the beta4GalT or alpha3GalT proteins. The carbohydrate chains synthesised by these enzymes are designated as type 1, whereas beta4GalT enzymes synthesize type 2 carbohydrate chains. The ratio of type 1:type 2 chains changes during embryogenesis. By sequence similarity, the beta3GalT genes fall into at least two groups: beta3GalT4 and 4 other beta3GalT genes (beta3GalT1-3, beta3GalT5). The encoded protein of this gene does not use N-acetylglucosamine as an acceptor sugar at all. Multiple transcript variants that are alternatively spliced in the 5' UTR have been described; they all encode the same protein.
Expand 1 Items
Anti-B3GALNT1 Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
This gene is a member of the beta-1,3-galactosyltransferase (beta3GalT) gene family. This family encodes type II membrane-bound glycoproteins with diverse enzymatic functions using different donor substrates (UDP-galactose and UDP-N-acetylglucosamine) and different acceptor sugars (N-acetylglucosamine, galactose, N-acetylgalactosamine). The beta3GalT genes are distantly related to the Drosophila Brainiac gene and have the protein coding sequence contained in a single exon. The beta3GalT proteins also contain conserved sequences not found in the beta4GalT or alpha3GalT proteins. The carbohydrate chains synthesized by these enzymes are designated as type 1, whereas beta4GalT enzymes synthesize type 2 carbohydrate chains. The ratio of type 1:type 2 chains changes during embryogenesis. By sequence similarity, the beta3GalT genes fall into at least two groups: beta3GalT4 and 4 other beta3GalT genes (beta3GalT1-3, beta3GalT5). The encoded protein of this gene does not use N-acetylglucosamine as an acceptor sugar at all. Multiple transcript variants that are alternatively spliced in the 5' UTR have been described; they all encode the same protein.
Expand 1 Items
Anti-B3GALNT1 Rabbit Polyclonal Antibody (Alexa Fluor® 750)
Supplier: Bioss
This gene is a member of the beta-1,3-galactosyltransferase (beta3GalT) gene family. This family encodes type II membrane-bound glycoproteins with diverse enzymatic functions using different donor substrates (UDP-galactose and UDP-N-acetylglucosamine) and different acceptor sugars (N-acetylglucosamine, galactose, N-acetylgalactosamine). The beta3GalT genes are distantly related to the Drosophila Brainiac gene and have the protein coding sequence contained in a single exon. The beta3GalT proteins also contain conserved sequences not found in the beta4GalT or alpha3GalT proteins. The carbohydrate chains synthesised by these enzymes are designated as type 1, whereas beta4GalT enzymes synthesize type 2 carbohydrate chains. The ratio of type 1:type 2 chains changes during embryogenesis. By sequence similarity, the beta3GalT genes fall into at least two groups: beta3GalT4 and 4 other beta3GalT genes (beta3GalT1-3, beta3GalT5). The encoded protein of this gene does not use N-acetylglucosamine as an acceptor sugar at all. Multiple transcript variants that are alternatively spliced in the 5' UTR have been described; they all encode the same protein.
Expand 1 Items
Anti-B3GALNT1 Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
This gene is a member of the beta-1,3-galactosyltransferase (beta3GalT) gene family. This family encodes type II membrane-bound glycoproteins with diverse enzymatic functions using different donor substrates (UDP-galactose and UDP-N-acetylglucosamine) and different acceptor sugars (N-acetylglucosamine, galactose, N-acetylgalactosamine). The beta3GalT genes are distantly related to the Drosophila Brainiac gene and have the protein coding sequence contained in a single exon. The beta3GalT proteins also contain conserved sequences not found in the beta4GalT or alpha3GalT proteins. The carbohydrate chains synthesized by these enzymes are designated as type 1, whereas beta4GalT enzymes synthesize type 2 carbohydrate chains. The ratio of type 1:type 2 chains changes during embryogenesis. By sequence similarity, the beta3GalT genes fall into at least two groups: beta3GalT4 and 4 other beta3GalT genes (beta3GalT1-3, beta3GalT5). The encoded protein of this gene does not use N-acetylglucosamine as an acceptor sugar at all. Multiple transcript variants that are alternatively spliced in the 5' UTR have been described; they all encode the same protein.