Order Entry
Canada
ContactUsLinkComponent
20780 résultats pour Proteins and Peptides

Vous avez recherché : Proteins and Peptides

Proteins and Peptides

Proteins are used in routine laboratory procedures such as binding enzymes or coupling peptides to carrier proteins. These kits, mixture solutions, and collagen matrices fulfill a myriad of essential laboratory functions for developing relationships between proteins and other cellular components. The stimulating proteins offered have various amino acid arrangements and functions to fulfill any sample manipulation for testing purposes in any field.

Trier par
Human Recombinant PDGF-DD

Human Recombinant PDGF-DD

Supplier: STEMCELL Technologies

The platelet-derived growth factor (PDGF) family has five heparin-binding members that assemble into four homodimers (PDGF-AA, PDGF-BB, PDGF-CC, and PDGF-DD) and one heterodimer (PDGF-AB; Fretto et al.; Li and Eriksson). PDGF signals through the receptor tyrosine kinases PDGFRα and PDGFRβ. It has been shown that PDGF-induced migration involves signaling pathways involving MEK/ERK, EGFR, Src, and PI3K/AKT (Kim et al.). PDGF is a potent mitogen for cells of mesenchymal origin, such as fibroblasts, glial cells, and vascular smooth muscle cells. PDGF has been implicated in pathogenesis of atherosclerosis, glomerulonephritis, cancer, and in the contraction of vascular smooth muscle cells of rat aortic tissues (Fretto et al.; Sachinidis et al.). PDGF-DD promotes growth and survival of renal artery smooth muscle cells and lens epithelial cells, and can act as a macrophage chemoattractant (Changsirikulchai et al.; Lokker et al.; Ray et al.; Uutela et al.).

Expand 1 Items
Chargement...

Human Recombinant VEGFR-1 (soluble) (from Insect Cells (Sf9))

Supplier: Adipogen

Recombinant human soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) is the naturally occurring form and is a glycosylated monomeric protein. The biological function of sVEGFR-1 seems to be an endogenous regulator of angiogenesis, binding VEGF with the same affinity as the full-length receptor. VEGFR-1 is a tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFB and PGF, and plays an essential role in the development of embryonic vasculature, the regulation of angiogenesis, cell survival, cell migration, macrophage function, chemotaxis and cancer cell invasion. It may play an essential role as a negative regulator of embryonic angiogenesis by inhibiting excessive proliferation of endothelial cells. It can promote endothelial cell proliferation, survival and angiogenesis in adulthood. Its function in promoting cell proliferation seems to be cell-type specific. Promotes PGF-mediated proliferation of endothelial cells, proliferation of some types of cancer cells, but does not promote proliferation of normal fibroblasts (in vitro). It has a very high affinity for VEGFA and relatively low protein kinase activity. It may function as a negative regulator of VEGFA signaling by limiting the amount of free VEGFA and preventing its binding to KDR. Modulates KDR signaling by forming heterodimers with KDR. Ligand binding leads to the activation of several signaling cascades. Activation of phospholipase C-gamma (PLCG) leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leading to activation of phosphatidylinositol kinase and the downstream signaling pathway. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Phosphorylates SRC and YES1 and may also phosphorylate CBL.

Expand 2 Items
Chargement...
Human Recombinant LIF, ACF

Human Recombinant LIF, ACF

Supplier: STEMCELL Technologies

Leukemia inhibitory factor (LIF) is an interleukin 6 class cytokine that regulates a broad variety of developmental functions. After LIF binds to LIF receptor (LIFR), LIFR associates with gp130 and activates JAK/STAT and MAPK signaling (Auernhammer and Melmed; Suman et al.). LIFR activation of STAT3 is essential for maintaining the mouse embryonic stem cell phenotype (Niwa et al.). Produced by the endometrium, LIF plays an important autocrine and paracrine role in implantation by regulating proliferation, invasion, and differentiation of trophoblasts following blastocyst attachment (Auernhammer and Melmed; Suman et al.). Human LIF can be used for the maintenance of mouse embryonic stem cells, however mouse LIF cannot bind to the human receptor, thus rendering mouse LIF inactive (Dahéron et al.). LIF is produced by CD4+ and activated regulatory T cells, and promotes Foxp3 expression, while repressing Th17 lineage-specific genes (Metcalfe). LIF is also secreted by mesenchymal stromal cells, where it supports hematopoiesis and immune modulation (Nasef et al.). This product is animal component-free.

Expand 2 Items
Chargement...

Human Recombinant NF-kappaB (active) (from Insect Cells (Sf21))

Supplier: Adipogen

NF-kappaB is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappaB is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The heterodimeric p65-p50 complex is the most abundant complex. The dimers bind at kappaB sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappaB sites that they can bind with distinguishable affinity and specificity.Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappaB complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappaB inhibitor (I-kappaB) family. In a conventional activation pathway, I-kappaB is phosphorylated by I-kappaB kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappaB complex which translocates to the nucleus. NF-kappaB heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-kappaB p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappaB complex.

Expand 1 Items
Chargement...
Human Recombinant CNTF, ACF

Human Recombinant CNTF, ACF

Supplier: STEMCELL Technologies

Ciliary neurotrophic factor (CNTF) is a neurotrophic factor that belongs to the four-helix bundle cytokine family and is structurally related to interleukin 6 (IL-6), interleukin 11 (IL-11), leukemia inhibitory factor (LIF), and oncostatin M (OSM). CNTF binds to its receptor CNFTRα and induces formation of a heterodimer of the signal transducing IL-6 receptor gp130 and LIF receptor (LIFR)-β, which triggers JAK/STAT, ERK, and PI3K signaling cascades (Schuster et al.). CNTF plays an important role in neurogenesis and the differentiation of neural stem cells and has been suggested to possess a therapeutic role in treating neurological disorders (Ding et al.; Oppenheim et al.). CNTF has also been shown to protect rod photoreceptors from light-induced damage and have therapeutic effects on retinal degenerative diseases caused by genetic defect or damage induced by toxins, autoantibodies, or strong light (Pernet et al.; Rhee et al.). Another therapeutic role of CNTF has been reported in protecting oligodendrocytes from death induced by apoptosis (Louis et al.). Additionally, CNTF is commonly used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into astrocytes (Krencik and Zhang). This product is animal component-free.

Expand 2 Items
Chargement...
Human Recombinant IL-11

Human Recombinant IL-11

Supplier: STEMCELL Technologies

Interleukin 11 (IL-11) is a pleiotropic cytokine with effects on various tissues including the bone marrow, brain, and intestinal mucosa (Du andamp; Williams). It belongs to the IL-6 family of cytokines that share a common signal transducer, gp130. IL-11 induces the proliferation of hematopoietic stem cells (Lemoli et al.) and megakaryocytic progenitor cells (Bruno et al.), the maturation of megakaryocytes (Burstein et al.), and the production of platelets (Neben et al.). IL-11 is produced by a variety of cell types including hematopoietic cells, mesenchymal cells, epithelial cells, and neuronal cells. It was first cloned from a cDNA library of the human bone marrow-derived stromal cell line KM-102 (Kawashima et al.). The binding of IL-11 to its receptor induces heterodimerization with the gp130 subunit and activation of JAK tyrosine kinases. IL-11 was the first pharmacologic agent approved for the treatment of chemotherapy-induced thrombocytopenia. IL-11 also plays a role in cancer progression by inducing the proliferation of epithelial cancer cells and the survival of metastatic cells at distant organs. Recently, IL-11 has gained interest for its role in the pathogenesis of diseases in dysregulated mucosal homeostasis associated with STAT3 upregulation, including gastrointestinal cancers (Putoczki et al.).

Expand 2 Items
Chargement...
Human Recombinant GM-CSF (E. coli-expressed)

Human Recombinant GM-CSF (E. coli-expressed)

Supplier: STEMCELL Technologies

Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes the proliferation and differentiation of hematopoietic progenitor cells and the generation of neutrophils, eosinophils, and macrophages. In synergy with other cytokines such as stem cell factor, IL-3, erythropoietin, and thrombopoietin, it also stimulates erythroid and megakaryocyte progenitor cells (Barreda et al.). GM-CSF is produced by multiple cell types, including stromal cells, Paneth cells, macrophages, dendritic cells (DCs), endothelial cells, smooth muscle cells, fibroblasts, chondrocytes, and Th1 and Th17 T cells (Francisco-Cruz et al.). The receptor for GM-CSF (GM-CSFR) is composed of two subunits: the cytokine-specific α subunit (GMRα; CD116) and the common subunit βc (CD131) shared with IL-3 and IL-5 receptors (Broughton et al.). GM-CSFR is expressed on hematopoietic cells, including progenitor cells and immune cells, as well as non-hematopoietic cells. Recombinant human GM-CSF (rhGM-CSF) promotes the production of myeloid cells of the granulocytic (neutrophils, eosinophils and basophils) and monocytic lineages in vivo. It has been tested for mobilization of hematopoietic progenitor cells and for treating chemotherapy-induced neutropenia in patients. GM-CSF is able to stimulate the development of DCs that ingest, process, and present antigens to the immune system (Francisco-Cruz et al.).

Expand 1 Items
Chargement...
Human Recombinant SCF, ACF

Human Recombinant SCF, ACF

Supplier: STEMCELL Technologies

Stem cell factor (SCF) is an early-acting cytokine that plays a pivotal role in the regulation of embryonic and adult hematopoiesis. SCF promotes cell survival, proliferation, differentiation, adhesion, and functional activation of cells at multiple levels of the hematopoietic hierarchy. Together with other cytokines such as thrombopoietin and Flt3/Flk-2 Ligand, SCF is commonly used to promote expansion of primitive hematopoietic stem cells and multi-potent progenitor cells in culture (Martin et al.; Kent et al.). In synergy with various growth factors, including IL-2, IL-3, IL-6, IL-7, G-CSF, and erythropoietin, SCF increases proliferation and differentiation of myeloid and erythroid progenitor cells and a subset of lymphoid progenitor cells (Broudy). SCF is also a primary growth and activation factor for mast cells and eosinophils. SCF exists in two biologically active splice forms: a soluble and a transmembrane isoform. Upon binding to its receptor (c-Kit tyrosine kinase receptor; CD117), it activates PI3K, JAK/STAT, and MAPK pathways. SCF and signaling from c-Kit have also been reported to play an important role in pigmentation, fertility, vasculogenesis, motility of the gut via c-Kit positive interstitial cells of Cajal, and in the migration of neuronal stem and progenitor cells to sites of injury in the brain. This product is animal component-free.

Expand 1 Items
Chargement...
Human Recombinant M-CSF, ACF

Human Recombinant M-CSF, ACF

Supplier: STEMCELL Technologies

Macrophage colony-stimulating factor (M-CSF) is a homodimeric glycoprotein growth factor that regulates proliferation and differentiation of myeloid hematopoietic progenitors to mononuclear phagocytic cell lineages, including monocytes, macrophages, and osteoclasts. M-CSF is a crucial factor for the development of tissue-resident macrophages in most tissues (Ginhoux andamp; Jung). It is required for the maturation and activation of monocytes and macrophages, and regulates inflammatory responses in conjunction with other stimuli such as IFN-γ, LPS, and IL-4 (Murray et al.). M-CSF is also required for bone resorption by osteoclasts, and is involved in the development and regulation of placenta, mammary gland, and brain. M-CSF is produced by monocytes, fibroblasts, osteoclasts, stromal cells, endothelial cells, and tumor cells (Chockalingam andamp; Ghosh). M-CSF exerts its biological effects by signaling through a receptor tyrosine kinase (CSF-1R or M-CSF-R) encoded by the c-fms proto-oncogene (Hamilton). CSF-1R shares similar structural features with other growth factor receptors, including the stem cell factor (SCF) receptor, platelet-derived growth factor receptor (PDGF-R), and Flt3/Flk-2 receptor tyrosine kinase. Stimulation of the CSF-1R upon binding to M-CSF activates MAPK, PI3K, and PLCγ signaling pathways (Chockalingam andamp; Ghosh). Human and mouse M-CSF sequences are highly conserved both at nucleotide and amino acid levels (80% homology; DeLamarter et al.). This product is animal component-free.

Expand 2 Items
Chargement...
Human Recombinant PDGF-CC

Human Recombinant PDGF-CC

Supplier: STEMCELL Technologies

The platelet-derived growth factor (PDGF) family has five heparin-binding members that assemble into four homodimers (PDGF-AA, PDGF-BB, PDGF-CC, and PDGF-DD) and one heterodimer (PDGF-AB; Li and Eriksson). PDGF signals through the receptor tyrosine kinases PDGFRα and PDGFRβ. It has been shown that PDGF-induced migration involves signaling pathways involving MEK/ERK, EGFR, Src and PI3K/AKT (Kim et al.). PDGF is a potent mitogen for cells of mesenchymal origin such as fibroblasts and vascular smooth muscle cells. PDGF has been implicated in pathogenesis of atherosclerosis, glomerulonephritis, cancer, and in the contraction of vascular smooth muscle cells of rat aortic tissues (Fretto et al.; Sachinidis et al.). PDGF-CC is secreted as a latent growth factor and requires activation by proteolytic processing (Li and Eriksson). PDGF-CC binds to PDGFRα homodimers and PDGFRαβ heterodimers, but not to PDGFRβ homodimers (Li and Eriksson). PDGF-CC is an angiogenic factor that stimulates coronary artery smooth muscle cell proliferation and plays a role in cardiovascular development (Gilbertson et al.). PDGF-CC is also expressed in many tumors and plays a role in tumorigenesis (Zwerner and May).

Expand 1 Items
Chargement...
Human Recombinant SCF (E. coli-expressed)

Human Recombinant SCF (E. coli-expressed)

Supplier: STEMCELL Technologies

Stem cell factor (SCF) is an early-acting cytokine that plays a pivotal role in the regulation of embryonic and adult hematopoiesis. SCF promotes cell survival, proliferation, differentiation, adhesion, and functional activation of cells at multiple levels of the hematopoietic hierarchy. Together with other cytokines such as thrombopoietin and Flt3/Flk-2 Ligand, SCF is commonly used to promote expansion of primitive hematopoietic stem cells and multi-potent progenitor cells in culture (Martin et al.; Kent et al.). In synergy with various growth factors, including IL-2, IL-3, IL-6, IL-7, G-CSF, and erythropoietin, SCF increases proliferation and differentiation of myeloid and erythroid progenitor cells and a subset of lymphoid progenitor cells (Broudy). SCF is also a primary growth and activation factor for mast cells and eosinophils. SCF exists in two biologically active splice forms: a soluble and a transmembrane isoform. Upon binding to its receptor (c-Kit tyrosine kinase receptor; CD117), it activates PI3K, JAK/STAT, and MAPK pathways. SCF and signaling from c-Kit have also been reported to play an important role in pigmentation, fertility, vasculogenesis, motility of the gut via c-Kit positive interstitial cells of Cajal, and in the migration of neuronal stem and progenitor cells to sites of injury in the brain.

Expand 1 Items
Chargement...
Human Recombinant Flt3/Flk-2 Ligand, ACF

Human Recombinant Flt3/Flk-2 Ligand, ACF

Supplier: STEMCELL Technologies

Flt3/Flk-2 (Fms-like tyrosine kinase 3/fetal liver kinase-2) Ligand is a hematopoietic cytokine that plays an important role as a co-stimulatory factor in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells and the development of the immune system (Hannum et al.). Flt3/Flk-2 Ligand, together with stem cell factor and thrombopoietin, is commonly used to promote expansion of primitive CD34+ hematopoietic cells in culture. In combination with myeloid cytokines such as GM-CSF, G-CSF, or M-CSF, Flt3/Flk-2 Ligand enhances the growth and numbers of clonogenic myeloid progenitor cells. In synergy with the interleukins IL-3, IL-4, IL-7, IL-11, IL-12, IL-15, and GM-CSF and TNF-α, Flt3/Flk-2 Ligand regulates the development of various lymphoid progenitor cells, including dendritic cell, B cell, T cell, and NK cell progenitors. In contrast, Flt3/Flk-2 Ligand has no significant effect on erythropoiesis or megakaryopoiesis (Drexler and Quentmeier; Wodnar-Filipowicz). Flt3/Flk-2 Ligand exists as membrane-bound and soluble isoforms. Both isoforms are biologically active and signal through the class III tyrosine kinase receptor (Flt3/Flk-2, CD135; Rosnet et al.). Flt3/Flk-2 Ligand is produced by a variety of cell types, including uncommitted and committed hematopoietic cells and stromal fibroblasts, whereas expression of the Flt3/Flk-2 receptor is restricted to CD34+ hematopoietic stem and progenitor cells. Flt3/Flk-2 receptor is also expressed on leukemic cells and outside the hematopoietic system in the brain, placenta, and testis (Drexler and Quentmeier; Hannum et al.). This product is animal component-free.

Expand 3 Items
Chargement...
Human Recombinant BDNF, ACF

Human Recombinant BDNF, ACF

Supplier: STEMCELL Technologies

Brain-derived neurotrophic factor (BDNF), like nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), is a member of the NGF family of neurotrophins, which are required for the differentiation and survival of specific neuronal subpopulations in both the central and the peripheral nervous systems (Minichiello and Klein; Minichiello et al.). BDNF binds with high affinity to the TRKB kinase receptor, and activates AKT and ERK pathways (Mattson et al.). It is expressed in hippocampus, cortex, and synapses of the basal forebrain. BDNF acts as a survival factor for human embryonic stem cells when plated on either feeder cells or Corning® Matrigel® (Pyle et al.). BDNF regulates synaptic transmission and plasticity at adult synapses in the central nervous system, contributes to adaptive neuronal responses including long-term potentiation, long-term depression, certain forms of short-term synaptic plasticity, as well as homeostatic regulation of neuronal excitability (Reichardt). It also has a role in neurogenesis by promoting survival and growth of dorsal root ganglion cells, and hippocampal and cortical neurons (Binder and Scharfman). BDNF, together with glial cell-derived neurotrophic factor (GDNF) and other supplements, is commonly used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into neurons (Brafman). This product is animal component-free.

Expand 2 Items
Chargement...
Mouse Recombinant G-CSF

Mouse Recombinant G-CSF

Supplier: STEMCELL Technologies

Granulocyte colony-stimulating factor (G-CSF) is a member of the CSF family of glycoproteins that regulate hematopoietic cell proliferation, differentiation, and function. It is a key cytokine involved in the production of neutrophils and the stimulation of granulocyte colony formation from hematopoietic progenitor cells (Metcalf and Nicola). G-CSF causes a range of effects including a transient reduction of SDF-1 expression (Petit et al.), the activation of metalloproteases that cleave VCAM-1 (Levesque et al.), and the release of norepinephrine from the sympathetic nervous system (Katayama et al.), leading to the release or mobilization of hematopoietic stem cells from the bone marrow into the periphery. The G-CSF receptor is expressed on a variety of hematopoietic cells, including myeloid-committed progenitor cells, neutrophils, granulocytes, and monocytes. In addition to hematopoietic cells, G-CSF is also expressed in cardiomyocytes, neuronal cells, mesothelial cells, and endothelial cells. Mouse G-CSF was first purified from cultures of the WEHI-3B myelomonocytic leukemia cell line as the inducer of the terminal differentiation of WEHI-3B and other myeloid leukemia cell lines (Nicola et al.). It was later cloned in monkey COS cells from a cDNA library prepared with mRNA derived from mouse fibrosarcoma NFSA cells that produce G-CSF constitutively (Tsuchiya et al.). Binding of G-CSF to its receptor leads to activation of the JAK/STAT, MAPK, PI3K, and AKT signal transduction pathways.

Expand 1 Items
Chargement...

Human Recombinant IL-8 (CXCL8)

Supplier: STEMCELL Technologies

Interleukin-8 (IL-8) is a member of the CXC subfamily of chemokines and is produced by leukocytic cells (monocytes, T cells, neutrophils, and natural killer cells) and non-leukocytic somatic cells (endothelial cells, fibroblasts, and epithelial cells), with the most prominent source being monocytes and macrophages. Its production is induced by inflammatory stimuli, such as IL-1. IL-8, also known as CXCL8, activates neutrophils inducing chemotaxis, exocytosis, and the respiratory burst (Baggiolini and Clark-Lewis; Mukaida). IL-8 is considered one of the most potent neutrophil chemoattractants in inflammation and binds to two different chemokine receptors on leukocytes: the G protein-coupled receptors CXCR1 and CXCR2 (Hoffmann et al.; de Oliveira et al.). IL-8 has angiogenic effects on human intestinal microvascular endothelial cells in vitro that are mediated by CXCR2 (Heidemann et al.). IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastasis and has been reported to be involved in regulating breast cancer stem-like cells (Singh et al.). IL-8 also has proangiogenic properties in inflammatory diseases of the conjunctiva, cornea, iris, retina, and orbit (Ghasemi et al.). It was also shown that a major T cell effector function in human newborns is IL-8 production, which has the potential to activate antimicrobial neutrophils and gamma/delta T cells (Gibbons et al.). A variety of human pathogens, such as HIV and Mycobacterium tuberculosis, have been shown to induce IL-8 production by monocytes and macrophages (Friedland et al.; Meddows-Taylor et al.).

Expand 1 Items
Chargement...
Mouse Recombinant IL-17A

Mouse Recombinant IL-17A

Supplier: STEMCELL Technologies

Interleukin 17A (IL-17A) is the founding member of the family of cytokines that includes Interleukin 17B through Interleukin 17F. It is a potent proinflammatory cytokine that plays a key role in defense against pathogens. IL-17A and IL-17F signal as homodimers or heterodimers through the same receptor, and activate NF-kB, MAPK, and C/EBP pathways (Gaffen). IL-17A receptor is expressed on a variety of cell types, including hematopoietic cell compartments. IL-17A is produced by T helper 17 cells, CD8+ T cells, γδ T cells, natural killer T cells, B cells, neutrophils, innate lymphoid cells and mesenchymal stromal cells (MSCs; Zenobia and amp; Hajishengallis; Mojsilovic et al.). IL-17A receptor is expressed at particularly high levels on stromal cells, including MSCs. IL-17A increases the frequency and the average size of colony-forming units-fibroblast derived from bone marrow, as well as the proliferation of bone marrow-derived MSCs. IL-17A suppresses osteogenic differentiation and bone formation of bone marrow-derived MSCs. The action of IL-17A on hematopoiesis is deeply reliant on the microenvironment and the induction of other regulators. In healthy mouse bone marrow, IL-17A stimulates myeloid and early stage erythroid progenitor cells but inhibits late stage erythroid progenitor cells (Mojsilovic et al.).

Expand 1 Items
Chargement...

Human Recombinant BAFF (active) (soluble) (from E. coli)

Supplier: Adipogen

BAFF is mainly produced by innate immune cells such as neutrophils, monocytes, macrophages, dendritic cells, follicular dendritic cells. T cells, activated B cells, some malignant B cells and also non-lymphoid cells like astrocytes, synoviocytes and epithelial cells can also produce BAFF. BAFF binds three distinct receptors (BAFF-R, TACI and BCMA) expressed predominantly on B cells, although activated T cells also express BAFF-R. BAFF is a master regulator of peripheral B cell survival, and together with IL-6, promotes Ig class-switching and plasma cell differentiation. Besides its major role in B cell biology, BAFF co-stimulates activated T cells. Deregulated expression of BAFF leads to autoimmune disorders in mice. In humans, elevated levels of soluble BAFF have been detected in the serum of patients with various autoimmune diseases such as Sjoegren syndrome, Rheumatoid arthritis (RA), Multiple sclerosis (MS) and Systemic Lupus Erythematosus (SLE). BAFF has also increased levels in some lymphoid cancers. Processed human BAFF can either remain as a trimer, which is usual for TNF family ligands or assemble into 60-mer composed of 20 trimers. Mouse BAFF 60-mer has been identified in the serum of BAFF transgenic mice. Oligomerization of BAFF 3-mer into 60-mer in human BAFF is prevented by mutation of His218, a residue critical for 3-mer-to-3-mer interactions, but not for receptor binding. Despite the predominant functional role of processed BAFF in vivo, membrane-bound BAFF might also play a role. Indeed, soluble BAFF (3-mer) can trigger BAFF-R but not TACI or BCMA, whereas oligomeric forms of BAFF (BAFF 60-mer), which mimic membrane-bound BAFF, activate all BAFF receptors.

Expand 1 Items
Chargement...

Human IL-2 (from HEK293 cells)

Supplier: Adipogen

Interleukin-2 (IL-2) is a 133 amino acid glycoprotein with one intramolecular disulfide bond and variable glycosylation. It is secreted by activated T cells and induces proliferation and maturation of activated T cells, natural killer cells and lymphokine activated killer cells. IL-2 also stimulates proliferation of antibody-producing B cells, activates neutrophils and induces mononuclear cells to secrete IFN-gamma and TNF-alpha and -beta. Moreover, studies have shown that IL-2 is required for activation-induced apoptosis, an important homeostatic mechanism in the immune system, which is involved in the maintenance of peripheral tolerance to self-antigens. IL-2 promotes T cell proliferation and particularly naive T cells. IL-2 signaling on activated T cells is effected through a quaternary high-affinity receptor complex consisting of IL-2, IL-2Ralpha (CD25), IL-2Rbeta and IL-2Rgamma. Naive T cells are relatively insensitive to IL-2 as they only express small amounts of IL-2Rbeta and IL-2Rgamma. They only acquire sensitivity after CD25 expression, which captures the cytokine and presents it to the IL-2Rbeta and IL-2Rgamma receptors. IL-2 Superkine (Fc) is an artificial variant of IL-2 containing mutations at positions L80F / R81D / L85V / I 86V / I92F. These mutations are located in the molecule's core that acts to stabilize the structure and to give it a receptor-binding conformation mimicking native IL-2 bound to CD25. These mutations effectively eliminate the functional requirement of IL-2 for CD25 expression and elicit proliferation of T cells. Compared to IL-2, the IL-2 superkine induces superior expansion of cytotoxic T cells, leading to improved antitumour responses in vivo, and elicits proportionally less toxicity by lowering the expansion of Tregulatory cells and reducing pulmonary oedema.

Expand 2 Items
Chargement...
Human Recombinant Flt3/Flk-2 Ligand (E. coli expressed)

Human Recombinant Flt3/Flk-2 Ligand (E. coli expressed)

Supplier: STEMCELL Technologies

Flt3/Flk-2 (Fms-like tyrosine kinase 3/fetal liver kinase-2) Ligand is a hematopoietic cytokine that plays an important role as a co-stimulatory factor in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells and in the development of the immune system (Hannum et al.). Flt3/Flk-2 Ligand, together with stem cell factor and thrombopoietin, is commonly used to promote expansion of primitive CD34+ hematopoietic cells in culture. In combination with myeloid cytokines such as GM-CSF, G-CSF, or M-CSF, Flt3/Flk-2 Ligand enhances the growth and numbers of clonogenic myeloid progenitor cells. In synergy with the interleukins IL-3, IL-4, IL-7, IL-11, IL-12, IL-15, and GM-CSF and TNF-α, Flt3/Flk-2 Ligand regulates the development of various lymphoid progenitor cells, including dendritic cell, B cell, T cell, and NK cell progenitors. In contrast, Flt3/Flk-2 Ligand has no significant effect on erythropoiesis or megakaryopoiesis (Drexler andamp; Quentmeier; Wodnar-Filipowicz). Flt3/Flk-2 Ligand exists as membrane-bound and soluble isoforms. Both isoforms are biologically active and signal through the class III tyrosine kinase receptor (Flt3/Flk-2, CD135; Rosnet et al.). Flt3/Flk-2 Ligand is produced by a variety of cell types, including uncommitted and committed hematopoietic cells and stromal fibroblasts, whereas expression of the Flt3/Flk-2 receptor is restricted to CD34+ hematopoietic stem and progenitor cells. Flt3/Flk-2 receptor is also expressed on leukemic cells and outside the hematopoietic system in the brain, placenta, and testis (Drexler andamp; Quentmeier; Hannum et al.).

Expand 1 Items
Chargement...
NEBExpress GamS Nuclease Inhibitor

NEBExpress GamS Nuclease Inhibitor

Supplier: New England Biolabs (NEB)

NEBExpress GamS nuclease inhibitor is a recombinant protein that inhibits Exonuclease V (RecBCD) activity and stabilizes linear DNA templates in E. coli based in vitro protein synthesis reactions.

Expand 1 Items
Chargement...
Trier par
Recommended for You