Order Entry
Canada
ContactUsLinkComponent
18528 results for "Bis[4,4'-dimethoxy(dithiobenzoic)]nickel(II)"

18528 Results for: "Bis[4,4'-dimethoxy(dithiobenzoic)]nickel(II)"

Total RNA Purification Kit

Total RNA Purification Kit

Supplier: Stemcell Technologies

For purification of RNA from cells.

Expand 1 Items
Loading...

Human Recombinant IL-8 (CXCL8)

Supplier: Stemcell Technologies

Interleukin-8 (IL-8) is a member of the CXC subfamily of chemokines and is produced by leukocytic cells (monocytes, T cells, neutrophils, and natural killer cells) and non-leukocytic somatic cells (endothelial cells, fibroblasts, and epithelial cells), with the most prominent source being monocytes and macrophages. Its production is induced by inflammatory stimuli, such as IL-1. IL-8, also known as CXCL8, activates neutrophils inducing chemotaxis, exocytosis, and the respiratory burst (Baggiolini and Clark-Lewis; Mukaida). IL-8 is considered one of the most potent neutrophil chemoattractants in inflammation and binds to two different chemokine receptors on leukocytes: the G protein-coupled receptors CXCR1 and CXCR2 (Hoffmann et al.; de Oliveira et al.). IL-8 has angiogenic effects on human intestinal microvascular endothelial cells in vitro that are mediated by CXCR2 (Heidemann et al.). IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastasis and has been reported to be involved in regulating breast cancer stem-like cells (Singh et al.). IL-8 also has proangiogenic properties in inflammatory diseases of the conjunctiva, cornea, iris, retina, and orbit (Ghasemi et al.). It was also shown that a major T cell effector function in human newborns is IL-8 production, which has the potential to activate antimicrobial neutrophils and gamma/delta T cells (Gibbons et al.). A variety of human pathogens, such as HIV and Mycobacterium tuberculosis, have been shown to induce IL-8 production by monocytes and macrophages (Friedland et al.; Meddows-Taylor et al.).

Expand 1 Items
Loading...
Human Recombinant IL-34, His tag

Human Recombinant IL-34, His tag

Supplier: Stemcell Technologies

Interleukin 34 (IL-34) is well known for its ability to induce the formation of colony-forming unit macrophages in human bone marrow cell cultures (Foucher et al.; Wei et al.). This dimeric glycoprotein is a member of the short-chain helical hematopoietic cytokine family (Baghdadi et al.; Foucher et al.), and exists in two isoforms that differ by a single glutamine (Chen et al.; Foucher et al; Wei et al.). IL-34 interacts with M-CSF to trigger tyrosine phosphorylation of the receptor and ERK1/2 pathways. (Wang et al.; Wei et al.). It is expressed in many tissues (heart, brain, lung, liver, kidney, thymus, testes, ovary, small intestine, prostate, and colon), with the highest expression in the spleen. In combination with RANKL (MSPP-78214), IL-34 induces osteoclast differentiation (Chen et al.; Foucher et al.). IL-34 expression is decreased in Alzheimer’s disease and atopic dermatitis, while high levels of IL-34 are found in many types of cancer correlated with poor prognosis, chronic heart failure or coronary artery disease, inflammatory bowel disease, influenza A infection, during acute liver transplant rejection or in non-alcoholic fatty liver disease, and with rheumatoid arthritis (Baghdadi et al.). It is therefore a possible pharmacological target for treating bone or inflammatory diseases (Chen et al.). This protein contains a His-residue tag at the carboxyl end of the polypeptide chain, and the protein was purified as a homodimer consisting of 39 kDa monomers (Lin et al.).

Expand 1 Items
Loading...
Mouse Recombinant Flt3/Flk-2 Ligand

Mouse Recombinant Flt3/Flk-2 Ligand

Supplier: Stemcell Technologies

Flt3/Flk-2 (Fms-like tyrosine kinase 3/fetal liver kinase-2) ligand is a hematopoietic cytokine that plays an important role as a co-stimulatory factor in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells and the development of the immune system (Lyman et al.; Rosnet et al.). Flt3/Flk-2 ligand, together with stem cell factor and thrombopoietin, is commonly used to promote expansion of primitive hematopoietic cells in culture. In combination with myeloid cytokines such as GM-CSF, G-CSF, or M-CSF, Flt3/Flk-2 ligand enhances the growth and numbers of clonogenic myeloid progenitor cells. In synergy with IL-3, IL-4, IL-7, IL-11, IL-12, IL-15, GM-CSF, and TNF-α, Flt3/Flk-2 ligand regulates the development of various lymphoid progenitor cells, including dendritic cell, B cell, T cell, and NK cell progenitors. In contrast, Flt3/Flk-2 ligand has no significant effect on erythropoiesis or megakaryopoiesis (Drexler and Quentmeier; Wodnar-Filipowicz). Flt3/Flk-2 ligand exists as membrane-bound and soluble isoforms. Both isoforms are biologically active and signal through the class III tyrosine kinase receptor (Flt3/Flk-2, CD135; Rosnet et al.). Flt3/Flk-2 ligand is produced by a variety of cell types, including uncommitted and committed hematopoietic cells and stromal fibroblasts, whereas expression of the Flt3/Flk-2 receptor is restricted to CD34+ hematopoietic stem and progenitor cells. Flt3/Flk-2 receptor is also expressed outside the hematopoietic system in the brain, placenta, and testis (Drexler and Quentmeier; Hannum et al.).

Expand 1 Items
Loading...
Mouse Recombinant M-CSF (E.coli-expressed), His tag

Mouse Recombinant M-CSF (E.coli-expressed), His tag

Supplier: Stemcell Technologies

Macrophage colony-stimulating factor (M-CSF) is a homodimeric glycoprotein growth factor that regulates proliferation and differentiation of myeloid hematopoietic progenitors to mononuclear phagocytic cell lineages, including monocytes, macrophages, and osteoclasts. M-CSF is a crucial factor for the development of tissue-resident macrophages in most tissues (Ginhoux andamp; Jung). It is required for the maturation and activation of monocytes and macrophages, and regulates inflammatory responses in conjunction with other stimuli such as IFN-γ, LPS, and IL-4 (Murray et al.). M-CSF is also required for bone resorption by osteoclasts, and is involved in the development and regulation of placenta, mammary gland, and brain. M-CSF is produced by monocytes, fibroblasts, osteoclasts, stromal cells, endothelial cells, and tumor cells (Chockalingam andamp; Ghosh). M-CSF exerts its biological effects by signaling through a receptor tyrosine kinase (CSF-1R or M-CSF-R) encoded by the c-fms proto-oncogene (Hamilton). CSF-1R shares similar structural features with other growth factor receptors, including the stem cell factor (SCF) receptor, platelet-derived growth factor receptor (PDGF-R), and Flt3/Flk-2 receptor tyrosine kinase. Stimulation of the CSF-1R upon binding to M-CSF activates MAPK, PI3K, and PLCγ signaling pathways (Chockalingam andamp; Ghosh). Human and mouse M-CSF sequences are highly conserved both at nucleotide and amino acid levels (80% homology; DeLamarter et al.).

Expand 3 Items
Loading...
Human Recombinant GDNF, ACF

Human Recombinant GDNF, ACF

Supplier: Stemcell Technologies

Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor and a member of the tumor growth factor (TGF)-beta superfamily. The GDNF family of growth factors also includes neurturin, persephin, and artemin, which have seven conserved cysteine residues called cysteine-knot (Treanor et al.). GDNF family ligands signal through binding to specific GDNF-family receptor-α (GFRα) co-receptors and activate the RET receptor tyrosine kinase (Durbec et al.). Four different forms of GFRα co-receptors have been characterized (GFRα 1-4) out of which GDNF binds specifically to GFRα1 prior to forming a complex with RET (Airaksinen and Saarma). GDNF is known to promote survival and morphological differentiation of midbrain dopaminergic neurons in both in vivo and in vitro studies and increase their high-affinity dopamine uptake (Granholm et al.; Lin et al.). GDNF has also been shown to have restorative effects on dying dopaminergic neurons in response to degenerative toxins (Aoi et al.). GDNF, together with Human Recombinant BDNF (brain-derived neurotrophic factor; Catalog #78005), BrainPhys™ Neuronal Medium (Catalog #05790), and other supplements, can be used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into neurons (Bardy et al.). This product is animal component-free.

Expand 2 Items
Loading...

Zymo-Spin VP-X Column

Supplier: Zymo Research

The versatile Zymo-Spin V-PX with 15 and 50 ml reservoirs can be used in centrifuges or on vacuum manifolds for the purification of plasmid DNA.

Expand 1 Items
Loading...

Monarch® gDNA Purification Columns, New England Biolabs

Supplier: New England Biolabs (NEB)

The Monarch® gDNA Purification Columns are a component of the Monarch® Genomic DNA Purification Kit (NEB #T3010) and can be used to purify up to 30 µg of DNA from a wide variety of biological samples.

Expand 1 Items
Loading...
Anti-RFX4 Rabbit Polyclonal Antibody

Anti-RFX4 Rabbit Polyclonal Antibody

Supplier: Prosci

RFX4 is a transcription factors that contain a highly-conserved winged helix DNA binding domain. RFX4 is structurally related to regulatory factors X1, X2, X3, and X5. It has been shown to interact with itself as well as with regulatory factors X2 and X3, but it does not interact with regulatory factor X1. RFX4 may be a transcriptional repressor rather than a transcriptional activator.This gene is a member of the regulatory factor X gene family, which encodes transcription factors that contain a highly-conserved winged helix DNA binding domain. The protein encoded by this gene is structurally related to regulatory factors X1, X2, X3, and X5. It has been shown to interact with itself as well as with regulatory factors X2 and X3, but it does not interact with regulatory factor X1. This protein may be a transcriptional repressor rather than a transcriptional activator. Three transcript variants encoding different isoforms have been described for this gene.This gene is a member of the regulatory factor X gene family, which encodes transcription factors that contain a highly-conserved winged helix DNA binding domain. The protein encoded by this gene is structurally related to regulatory factors X1, X2, X3, and X5. It has been shown to interact with itself as well as with regulatory factors X2 and X3, but it does not interact with regulatory factor X1. This protein may be a transcriptional repressor rather than a transcriptional activator. Three transcript variants encoding different isoforms have been described for this gene.

Expand 1 Items
Loading...
Human Recombinant Flt3/Flk-2 Ligand (E. coli expressed)

Human Recombinant Flt3/Flk-2 Ligand (E. coli expressed)

Supplier: Stemcell Technologies

Flt3/Flk-2 (Fms-like tyrosine kinase 3/fetal liver kinase-2) Ligand is a hematopoietic cytokine that plays an important role as a co-stimulatory factor in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells and in the development of the immune system (Hannum et al.). Flt3/Flk-2 Ligand, together with stem cell factor and thrombopoietin, is commonly used to promote expansion of primitive CD34+ hematopoietic cells in culture. In combination with myeloid cytokines such as GM-CSF, G-CSF, or M-CSF, Flt3/Flk-2 Ligand enhances the growth and numbers of clonogenic myeloid progenitor cells. In synergy with the interleukins IL-3, IL-4, IL-7, IL-11, IL-12, IL-15, and GM-CSF and TNF-α, Flt3/Flk-2 Ligand regulates the development of various lymphoid progenitor cells, including dendritic cell, B cell, T cell, and NK cell progenitors. In contrast, Flt3/Flk-2 Ligand has no significant effect on erythropoiesis or megakaryopoiesis (Drexler andamp; Quentmeier; Wodnar-Filipowicz). Flt3/Flk-2 Ligand exists as membrane-bound and soluble isoforms. Both isoforms are biologically active and signal through the class III tyrosine kinase receptor (Flt3/Flk-2, CD135; Rosnet et al.). Flt3/Flk-2 Ligand is produced by a variety of cell types, including uncommitted and committed hematopoietic cells and stromal fibroblasts, whereas expression of the Flt3/Flk-2 receptor is restricted to CD34+ hematopoietic stem and progenitor cells. Flt3/Flk-2 receptor is also expressed on leukemic cells and outside the hematopoietic system in the brain, placenta, and testis (Drexler andamp; Quentmeier; Hannum et al.).

Expand 1 Items
Loading...
Human Recombinant Flt3/Flk-2 Ligand, ACF

Human Recombinant Flt3/Flk-2 Ligand, ACF

Supplier: Stemcell Technologies

Flt3/Flk-2 (Fms-like tyrosine kinase 3/fetal liver kinase-2) Ligand is a hematopoietic cytokine that plays an important role as a co-stimulatory factor in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells and the development of the immune system (Hannum et al.). Flt3/Flk-2 Ligand, together with stem cell factor and thrombopoietin, is commonly used to promote expansion of primitive CD34+ hematopoietic cells in culture. In combination with myeloid cytokines such as GM-CSF, G-CSF, or M-CSF, Flt3/Flk-2 Ligand enhances the growth and numbers of clonogenic myeloid progenitor cells. In synergy with the interleukins IL-3, IL-4, IL-7, IL-11, IL-12, IL-15, and GM-CSF and TNF-α, Flt3/Flk-2 Ligand regulates the development of various lymphoid progenitor cells, including dendritic cell, B cell, T cell, and NK cell progenitors. In contrast, Flt3/Flk-2 Ligand has no significant effect on erythropoiesis or megakaryopoiesis (Drexler and Quentmeier; Wodnar-Filipowicz). Flt3/Flk-2 Ligand exists as membrane-bound and soluble isoforms. Both isoforms are biologically active and signal through the class III tyrosine kinase receptor (Flt3/Flk-2, CD135; Rosnet et al.). Flt3/Flk-2 Ligand is produced by a variety of cell types, including uncommitted and committed hematopoietic cells and stromal fibroblasts, whereas expression of the Flt3/Flk-2 receptor is restricted to CD34+ hematopoietic stem and progenitor cells. Flt3/Flk-2 receptor is also expressed on leukemic cells and outside the hematopoietic system in the brain, placenta, and testis (Drexler and Quentmeier; Hannum et al.). This product is animal component-free.

Expand 3 Items
Loading...
Monarch® RNA Cleanup Columns (500 µg), New England Biolabs

Monarch® RNA Cleanup Columns (500 µg), New England Biolabs

Supplier: New England Biolabs (NEB)

The Monarch® RNA cleanup columns (500 µg) are a component of the Monarch® RNA cleanup kit (500 µg) and can be used to purify up to 500 µg of RNA from enzymatic reactions including high-yield RNA synthesis reactions.

Expand 1 Items
Loading...
Anti-RFX4 Rabbit Polyclonal Antibody

Anti-RFX4 Rabbit Polyclonal Antibody

Supplier: Prosci

RFX4 is a transcription factors that contain a highly-conserved winged helix DNA binding domain. RFX4 is structurally related to regulatory factors X1, X2, X3, and X5. It has been shown to interact with itself as well as with regulatory factors X2 and X3, but it does not interact with regulatory factor X1. RFX4 may be a transcriptional repressor rather than a transcriptional activator.This gene is a member of the regulatory factor X gene family, which encodes transcription factors that contain a highly-conserved winged helix DNA binding domain. The protein encoded by this gene is structurally related to regulatory factors X1, X2, X3, and X5. It has been shown to interact with itself as well as with regulatory factors X2 and X3, but it does not interact with regulatory factor X1. This protein may be a transcriptional repressor rather than a transcriptional activator. Three transcript variants encoding different isoforms have been described for this gene.This gene is a member of the regulatory factor X gene family, which encodes transcription factors that contain a highly-conserved winged helix DNA binding domain. The protein encoded by this gene is structurally related to regulatory factors X1, X2, X3, and X5. It has been shown to interact with itself as well as with regulatory factors X2 and X3, but it does not interact with regulatory factor X1. This protein may be a transcriptional repressor rather than a transcriptional activator. Three transcript variants encoding different isoforms have been described for this gene.

Expand 1 Items
Loading...

Zymo-Spin VP-S Column

Supplier: Zymo Research

The versatile Zymo-Spin V-PS with 15 and 50 ml reservoirs can be used in centrifuges or on vacuum manifolds for the purification of plasmid DNA.

Expand 1 Items
Loading...

E.Z.N.A.® RNA Isolation Kits, Omega Bio-Tek

Supplier: Omega Bio-Tek

Isolated RNA can be used for Northern blotting, RT-PCR, nuclease protection assays, in vitro translation, and microarray analysis

Expand 3 Items
Loading...

Pierce™ Immunoprecipitation, Magnetic ChIP Kit, Thermo Scientific

Supplier: Thermo Scientific

The Pierce™ Magnetic ChIP Kit provides a convenient method for efficient isolation of chromatin-bound DNA by immunoprecipitation for subsequent quantitation by PCR.

Expand 1 Items
Loading...

Anti-Leptin Rabbit Polyclonal Antibody

Supplier: Rockland Immunochemical

Leptin is a key player in the regulation of energy balance and body weight control. Once released into the circulation, it has central and peripheral effects by binding LEPR, found in many tissues, which results in the activation of several major signaling pathways. It acts as an appetite-regulating factor, regulates bone mass and secretion of hypothalamo-pituitary-adrenal hormones, it increases basal metabolism, influences reproductive function, regulates pancreatic beta-cell function and insulin secretion, it induces FOS and SOCS3 expression to release anorexigenic peptides. It has a modulatory role in nutrient absorption. It reduces glucose absorption by enterocytes by activating PKC and leading to a sequential activation of p38, PI3K and ERK signaling pathways which exerts an inhibitory effect on glucose absorption. It acts as a growth factor on certain tissues, through the activation of different signaling pathways increases expression of genes involved in cell cycle regulation such as CCND1, via JAK2-STAT3 pathway, or VEGFA, via MAPK1/3 and PI3K-AKT1 pathways. It may also play an apoptotic role via JAK2-STAT3 pathway and up-regulation of BIRC5 expression. It plays a pro-inflammatory role, in synergy with IL1B, by inducing NOS2 which promotes the production of IL6, IL8 and Prostaglandin E2, through a signaling pathway that involves JAK2, PI3K, MAP2K1/MEK1 and MAPK14/p38. In adaptive immunity, promotes the switch of memory T-cells towards T helper-1 cell immune responses. Increases CD4+CD25- T cells proliferation and reduces autophagy during TCR (T cell receptor) stimulation, through MTOR signaling pathway activation and BCL2 up-regulation.

Expand 1 Items
Loading...

Anti-Leptin Rabbit Polyclonal Antibody

Supplier: Rockland Immunochemical

Leptin is a key player in the regulation of energy balance and body weight control. Once released into the circulation, it has central and peripheral effects by binding LEPR, found in many tissues, which results in the activation of several major signaling pathways. It acts as an appetite-regulating factor, regulates bone mass and secretion of hypothalamo-pituitary-adrenal hormones, it increases basal metabolism, influences reproductive function, regulates pancreatic beta-cell function and insulin secretion, it induces FOS and SOCS3 expression to release anorexigenic peptides. It has a modulatory role in nutrient absorption. It reduces glucose absorption by enterocytes by activating PKC and leading to a sequential activation of p38, PI3K and ERK signaling pathways which exerts an inhibitory effect on glucose absorption. It acts as a growth factor on certain tissues, through the activation of different signaling pathways increases expression of genes involved in cell cycle regulation such as CCND1, via JAK2-STAT3 pathway, or VEGFA, via MAPK1/3 and PI3K-AKT1 pathways. It may also play an apoptotic role via JAK2-STAT3 pathway and up-regulation of BIRC5 expression. It plays a pro-inflammatory role, in synergy with IL1B, by inducing NOS2 which promotes the production of IL6, IL8 and Prostaglandin E2, through a signaling pathway that involves JAK2, PI3K, MAP2K1/MEK1 and MAPK14/p38. In adaptive immunity, promotes the switch of memory T-cells towards T helper-1 cell immune responses. Increases CD4+CD25- T cells proliferation and reduces autophagy during TCR (T cell receptor) stimulation, through MTOR signaling pathway activation and BCL2 up-regulation.

Expand 1 Items
Loading...
Recommended for You