Order Entry
ContactUsLinkComponent
170771 results for Antibodies

You searched for: Antibodies

Antibodies

Searching for antibodies just got easier. VWR has gathered hundreds of thousands of antibodies from a multitude of suppliers to meet your application needs; all you have to do is input your required criteria and in seconds IgGy does the searching for you, delivering you the best options in antibody selection.

Anti-CARM1 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Methylates (mono- and asymmetric dimethylation) the guanidino nitrogens of arginyl residues in several proteins involved in DNA packaging, transcription regulation, pre-mRNA splicing, and mRNA stability. Recruited to promoters upon gene activation together with histone acetyltransferases from EP300/P300 and p160 families, methylates histone H3 at 'Arg-17' (H3R17me), forming mainly asymmetric dimethylarginine (H3R17me2a), leading to activate transcription via chromatin remodeling. During nuclear hormone receptor activation and TCF7L2/TCF4 activation, acts synergically with EP300/P300 and either one of the p160 histone acetyltransferases NCOA1/SRC1, NCOA2/GRIP1 and NCOA3/ACTR or CTNNB1/beta-catenin to activate transcription. During myogenic transcriptional activation, acts together with NCOA3/ACTR as a coactivator for MEF2C. During monocyte inflammatory stimulation, acts together with EP300/P300 as a coactivator for NF-kappa-B. Acts as coactivator for PPARG, promotes adipocyte differentiation and the accumulation of brown fat tissue. Plays a role in the regulation of pre-mRNA alternative splicing by methylation of splicing factors. Also seems to be involved in p53/TP53 transcriptional activation. Methylates EP300/P300, both at 'Arg-2142', which may loosen its interaction with NCOA2/GRIP1, and at 'Arg-580' and 'Arg-604' in the KIX domain, which impairs its interaction with CREB and inhibits CREB-dependent transcriptional activation. Also methylates arginine residues in RNA-binding proteins PABPC1, ELAVL1 and ELAV4, which may affect their mRNA-stabilizing properties and the half-life of their target mRNAs.

Expand 1 Items
Loading...

Anti-COT Rabbit Polyclonal Antibody

Supplier: Thermo Scientific

Mitogen-activated protein kinase (MAPK) signaling cascades include MAPK or extracellular signal-regulated kinase (ERK), MAPK kinase (MKK or MEK), and MAPK kinase kinase (MAPKKK or MEKK). MAPKK kinase/MEKK phosphorylates and activates its downstream protein kinase, MAPK kinase/MEK, which in turn activates MAPK. The kinases of these signaling cascades are highly conserved, and homologs exist in yeast, Drosophila, and mammalian cells. MEKK8 is able to activate NF-kappa-B 1 by stimulating proteasome-mediated proteolysis of NF-kappa-B 1/p105. The protein appears to play an important role in the cell cycle. This cytoplasmic protein is expressed in several normal tissues and human tumor-derived cell lines. The 58 kDa form is activated specifically during the S and G2/M phases of the cell cycle. The longer form undergoes phosphorylation on Ser residues mainly, and the shorter form on both Ser and Thr residues.

Expand 1 Items
Loading...

Anti-IGF2R Mouse Monoclonal Antibody

Supplier: MilliporeSigma

Primary Mouse Anti-Mannose 6-Phosphate Receptor (2G11) Reacts with Cow (Bovine, Cattle), Human, Monkey

Expand 1 Items
Loading...

Anti-CALCA Mouse Monoclonal Antibody [clone: 38F11]

Supplier: Genetex

Procalcitonin (PCT) is a 116 amino acid residue peptide with molecular weight of about 13 kDa. The amino acid sequence of PCT was firstly described by Moullec et al. in 1984. It belongs to a group of related proteins including calcitonin gene-related peptides I and II, amylin, adrenomodulin and calcitonin (CAPA peptide family). PCT, like other peptides of CAPA family, appears from the common precursor pre-procalcitonin consisting of 141 amino acids by removal of 25 a.a.r. from N-terminus. PCT is produced normally in C-cells of the thyroid glands. It undergoes successive cleavages to form three molecules: N-terminal fragment (55 a.a.r.), calcitonin (32 a.a.r.) and katacalcin (21 a.a.r.). It has been shown that the level of PCT in serum increases significantly during an infection of bacterial origin (Assicot M, et al). Today PCT is considered to be one of the earliest and most specific markers of sepsis. However, several studies revealed that elevated PCT level in human blood could be detected not only in case of sepsis and infection, but also in cases of surgery, polytrauma, heat shock and cardiogenic shock (Meisner M. & Reinhart K). The importance of PCT measurements in combination with cTnT or cTnI during heart transplantation to predict an early graft failure has been proved(Potapov EV., et al).

Expand 1 Items
Loading...

Anti-TRA-1-81 Mouse Monoclonal Antibody (HRP (Horseradish Peroxidase)) [clone: tra-1-81]

Supplier: Thermo Scientific

It has been successfully used in Western blot applications on human samples. TRA-1-81 is a cell surface antigen expressed along with SSEA-3, SSEA-4 and TRA-1-60 in human embryonic stem cells, embryonal carcinoma cells and induced pluripotent stem cells (iPS). These surface markers are down-regulated during the differentiation process. In contrast, SSEA-1 is absent in undifferentiated human stem cells but is present on the cell surface after retinoic acid mediated differentiation.

Expand 1 Items
Loading...

Anti-IgG Goat Polyclonal Antibody (TRITC (Tetramethylrhodamine Isothiocyanate))

Supplier: Rockland Immunochemical

Secondary Goat Anti-IgG (H&L) Reacts with Guinea Pig

Expand 1 Items
Loading...

Anti-Ca V 2.2 (851-867) Rabbit Polyclonal Antibody

Supplier: MilliporeSigma

Primary Rabbit Anti- Ca V 1.3 (809-825) Reacts with Mouse, Rat

Expand 1 Items
Loading...
Anti-IRF7 Rabbit Polyclonal Antibody

Anti-IRF7 Rabbit Polyclonal Antibody

Supplier: Bioss

Key transcriptional regulator of type I interferon (IFN)-dependent immune responses and plays a critical role in the innate immune response against DNA and RNA viruses. Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters. Can efficiently activate both the IFN-beta (IFNB) and the IFN-alpha (IFNA) genes and mediate their induction via both the virus-activated, MyD88-independent pathway and the TLR-activated, MyD88-dependent pathway. Required during both the early and late phases of the IFN gene induction but is more critical for the late than for the early phase. Exists in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, becomes phosphorylated by IKBKE and TBK1 kinases. This induces a conformational change, leading to its dimerization and nuclear localization where along with other coactivators it can activate transcription of the type I IFN and ISG genes. Can also play a role in regulating adaptive immune responses by inducing PSMB9/LMP2 expression, either directly or through induction of IRF1. Binds to the Q promoter (Qp) of EBV nuclear antigen 1 a (EBNA1) and may play a role in the regulation of EBV latency. Can activate distinct gene expression programs in macrophages and regulate the anti-tumor properties of primary macrophages.

Expand 1 Items
Loading...

Anti-SEPARIN Rabbit Polyclonal Antibody

Supplier: Thermo Scientific

The metaphase-to-anaphase transition is the final discrete event in duplication and separation of the genetic material of the cell. Its timing is regulated by the activation of the anaphase-promoting complex (APC). In both budding and fission yeast, the degradation of the Pds1 or Cut2 protein, respectively, is required for the onset of sister chromatid separation. Both proteins are APC substrates. Pds1 and Cut2 proteins associate with the yeast separin proteins Esp1 and Cut1, respectively, and prevent the separins from promoting chromatid separation. Pds1 and Cut2 are also called anaphase inhibitors or securins

Expand 1 Items
Loading...
Anti-RPLP0 Rabbit Polyclonal Antibody

Anti-RPLP0 Rabbit Polyclonal Antibody

Supplier: Prosci

Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. The ribosomal protein is a component of the 60S subunit. The protein, which is the functional equivalent of the E. coli L10 ribosomal protein, belongs to the L10P family of ribosomal proteins. It is a neutral phosphoprotein with a C-terminal end that is nearly identical to the C-terminal ends of the acidic ribosomal phosphoproteins P1 and P2. The P0 protein can interact with P1 and P2 to form a pentameric complex consisting of P1 and P2 dimers, and a P0 monomer. Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein, which is the functional equivalent of the E. coli L10 ribosomal protein, belongs to the L10P family of ribosomal proteins. It is a neutral phosphoprotein with a C-terminal end that is nearly identical to the C-terminal ends of the acidic ribosomal phosphoproteins P1 and P2. The P0 protein can interact with P1 and P2 to form a pentameric complex consisting of P1 and P2 dimers, and a P0 monomer. The protein is located in the cytoplasm. Transcript variants derived from alternative splicing exist; they encode the same protein. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein, which is the functional equivalent of the E. coli L10 ribosomal protein, belongs to the L10P family of ribosomal proteins. It is a neutral phosphoprotein with a C-terminal end that is nearly identical to the C-terminal ends of the acidic ribosomal phosphoproteins P1 and P2. The P0 protein can interact with P1 and P2 to form a pentameric complex consisting of P1 and P2 dimers, and a P0 monomer. The protein is located in the cytoplasm. Transcript variants derived from alternative splicing exist; they encode the same protein. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome.

Expand 1 Items
Loading...

Bovine F(ab) IgG Isotype Control (Texas Red®)

Supplier: Rockland Immunochemical

Produced through a multi-stage process that includes delipidation, salt fractionation, ion-exchange chromatography, gel filtration, and affinity chromatography. No contaminating proteins are observed when assayed at a protein concentration of 20mg/mL against anti-whole serum or anti-fragment specific antisera. All immunoglobulin fragments are prepared from highly purified, whole molecules subject to enzymatic digestion.

Expand 1 Items
Loading...

Human Whole IgG Isotype Control (Texas Red®)

Supplier: Rockland Immunochemical

Produced through a multi-stage process that includes delipidation, salt fractionation, ion-exchange chromatography, gel filtration, and affinity chromatography. No contaminating proteins are observed when assayed at a protein concentration of 20mg/mL against anti-whole serum or anti-fragment specific antisera. All immunoglobulin fragments are prepared from highly purified, whole molecules subject to enzymatic digestion.

Expand 1 Items
Loading...

Mouse F(ab) IgG Isotype Control (Rhodamine)

Supplier: Rockland Immunochemical

Produced through a multi-stage process that includes delipidation, salt fractionation, ion-exchange chromatography, gel filtration, and affinity chromatography. No contaminating proteins are observed when assayed at a protein concentration of 20mg/mL against anti-whole serum or anti-fragment specific antisera. All immunoglobulin fragments are prepared from highly purified, whole molecules subject to enzymatic digestion.

Expand 1 Items
Loading...

Mouse Whole IgG1 Isotype Control [clone: MG1] (Biotin)

Supplier: Rockland Immunochemical

Produced through a multi-stage process that includes delipidation, salt fractionation, ion-exchange chromatography, gel filtration, and affinity chromatography. No contaminating proteins are observed when assayed at a protein concentration of 20mg/mL against anti-whole serum or anti-fragment specific antisera. All immunoglobulin fragments are prepared from highly purified, whole molecules subject to enzymatic digestion.

Expand 1 Items
Loading...

Rabbit F(ab) IgG Isotype Control (Biotin)

Supplier: Rockland Immunochemical

Produced through a multi-stage process that includes delipidation, salt fractionation, ion-exchange chromatography, gel filtration, and affinity chromatography. No contaminating proteins are observed when assayed at a protein concentration of 20mg/mL against anti-whole serum or anti-fragment specific antisera. All immunoglobulin fragments are prepared from highly purified, whole molecules subject to enzymatic digestion.

Expand 1 Items
Loading...

Rabbit Whole IgG Isotype Control (Biotin)

Supplier: Rockland Immunochemical

Produced through a multi-stage process that includes delipidation, salt fractionation, ion-exchange chromatography, gel filtration, and affinity chromatography. No contaminating proteins are observed when assayed at a protein concentration of 20mg/mL against anti-whole serum or anti-fragment specific antisera. All immunoglobulin fragments are prepared from highly purified, whole molecules subject to enzymatic digestion.

Expand 1 Items
Loading...

Anti-IgA/IgG/IgM Goat Polyclonal Antibody (Biotin)

Supplier: Rockland Immunochemical

Secondary Goat Anti-IgG IgA IgM Reacts with Ferret

Expand 1 Items
Loading...
Anti-GTF2H2 Rabbit Polyclonal Antibody

Anti-GTF2H2 Rabbit Polyclonal Antibody

Supplier: Prosci

GTF2H2 gene is part of a 500 kb inverted duplication on chromosome 5q13. This duplicated region contains at least four genes and repetitive elements which make it prone to rearrangements and deletions. The repetitiveness and complexity of the sequence have also caused difficulty in determining the organization of this genomic region. This gene is within the telomeric copy of the duplication. Deletion of this gene sometimes accompanies deletion of the neighboring SMN1 gene in spinal muscular atrophy (SMA) patients but it is unclear if deletion of this gene contributes to the SMA phenotype. GTF2H2 is the 44 kDa subunit of RNA polymerase II transcription initiation factor IIH which is involved in basal transcription and nucleotide excision repair. Transcript variants for this gene have been described, but their full length nature has not been determined. A second copy of this gene within the centromeric copy of the duplication has been described in the literature. It is reported to be different by either two or four base pairs; however, no sequence data is currently available for the centromeric copy of the gene.This gene is part of a 500 kb inverted duplication on chromosome 5q13. This duplicated region contains at least four genes and repetitive elements which make it prone to rearrangements and deletions. The repetitiveness and complexity of the sequence have also caused difficulty in determining the organization of this genomic region. This gene is within the telomeric copy of the duplication. Deletion of this gene sometimes accompanies deletion of the neighboring SMN1 gene in spinal muscular atrophy (SMA) patients but it is unclear if deletion of this gene contributes to the SMA phenotype. This gene encodes the 44 kDa subunit of RNA polymerase II transcription initiation factor IIH which is involved in basal transcription and nucleotide excision repair. Transcript variants for this gene have been described, but their full length nature has not been determined. A second copy of this gene within the centromeric copy of the duplication has been described in the literature. It is reported to be different by either two or four base pairs; however, no sequence data is currently available for the centromeric copy of the gene. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications. PRIMARYREFSEQ_SPAN PRIMARY_IDENTIFIER PRIMARY_SPAN COMP 1-15 BM083743.1 1-15 16-1121 AF078847.1 1-1106 1122-1537 BG283896.1 128-543 1538-1951 AC044797.5 132110-132523 c

Expand 1 Items
Loading...
Anti-TAF15 Rabbit Polyclonal Antibody

Anti-TAF15 Rabbit Polyclonal Antibody

Supplier: Prosci

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. Its gene encodes a subunit of TFIID present in a subset of TFIID complexes. Translocations involving chromosome 17 and chromosome 9, where the gene for the nuclear receptor CSMF is located, result in a gene fusion product that is an RNA binding protein associated with a subset of extraskeletal myxoid chondrosarcomas.Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes a subunit of TFIID present in a subset of TFIID complexes. Translocations involving chromosome 17 and chromosome 9, where the gene for the nuclear receptor CSMF is located, result in a gene fusion product that is an RNA binding protein associated with a subset of extraskeletal myxoid chondrosarcomas. Two transcripts encoding different isoforms have been identified.

Expand 1 Items
Loading...
Anti-DAZAP1 Rabbit Polyclonal Antibody

Anti-DAZAP1 Rabbit Polyclonal Antibody

Supplier: Prosci

In mammals, the Y chromosome directs the development of the testes and plays an important role in spermatogenesis. A high percentage of infertile men have deletions that map to regions of the Y chromosome. The DAZ (deleted in azoospermia) gene cluster maps to the AZFc region of the Y chromosome and is deleted in many azoospermic and severely oligospermic men. It is thought that the DAZ gene cluster arose from the transposition, amplification, and pruning of the ancestral autosomal gene DAZL also involved in germ cell development and gametogenesis. DAZAP1 is a RNA-binding protein with two RNP motifs that was originally identified by its interaction with the infertility factors DAZ and DAZL.In mammals, the Y chromosome directs the development of the testes and plays an important role in spermatogenesis. A high percentage of infertile men have deletions that map to regions of the Y chromosome. The DAZ (deleted in azoospermia) gene cluster maps to the AZFc region of the Y chromosome and is deleted in many azoospermic and severely oligospermic men. It is thought that the DAZ gene cluster arose from the transposition, amplification, and pruning of the ancestral autosomal gene DAZL also involved in germ cell development and gametogenesis. This gene encodes a RNA-binding protein with two RNP motifs that was originally identified by its interaction with the infertility factors DAZ and DAZL. Two isoforms are encoded by transcript variants of this gene.In mammals, the Y chromosome directs the development of the testes and plays an important role in spermatogenesis. A high percentage of infertile men have deletions that map to regions of the Y chromosome. The DAZ (deleted in azoospermia) gene cluster maps to the AZFc region of the Y chromosome and is deleted in many azoospermic and severely oligospermic men. It is thought that the DAZ gene cluster arose from the transposition, amplification, and pruning of the ancestral autosomal gene DAZL also involved in germ cell development and gametogenesis. This gene encodes a RNA-binding protein with two RNP motifs that was originally identified by its interaction with the infertility factors DAZ and DAZL. Two isoforms are encoded by transcript variants of this gene.

Expand 1 Items
Loading...
Anti-IgG Goat Polyclonal Antibody (Biotin)

Anti-IgG Goat Polyclonal Antibody (Biotin)

Supplier: Rockland Immunochemical

This product has been assayed against 1.0 µg of Swine IgG in a standard capture ELISA using Peroxidase Conjugated Streptavidin and ABTS (2,2’-azino-bis-[3-ethylbenthiazoline-6-sulfonic acid])

Expand 1 Items
Loading...

Anti-IRF7 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Key transcriptional regulator of type I interferon (IFN)-dependent immune responses and plays a critical role in the innate immune response against DNA and RNA viruses. Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters. Can efficiently activate both the IFN-beta (IFNB) and the IFN-alpha (IFNA) genes and mediate their induction via both the virus-activated, MyD88-independent pathway and the TLR-activated, MyD88-dependent pathway. Required during both the early and late phases of the IFN gene induction but is more critical for the late than for the early phase. Exists in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, becomes phosphorylated by IKBKE and TBK1 kinases. This induces a conformational change, leading to its dimerization and nuclear localization where along with other coactivators it can activate transcription of the type I IFN and ISG genes. Can also play a role in regulating adaptive immune responses by inducing PSMB9/LMP2 expression, either directly or through induction of IRF1. Binds to the Q promoter (Qp) of EBV nuclear antigen 1 a (EBNA1) and may play a role in the regulation of EBV latency. Can activate distinct gene expression programs in macrophages and regulate the anti-tumor properties of primary macrophages.

Expand 1 Items
Loading...

Anti-MYT1 Rabbit Polyclonal Antibody

Supplier: Thermo Scientific

The protein encoded by this gene is a member of the serine/threonine protein kinase family. This kinase preferentially phosphorylates and inactivates cell division cycle 2 protein (CDC2), and thus negatively regulates cell cycle G2/M transition. This kinase is associated with the membrane throughout the cell cycle. Its activity is highly regulated during the cell cycle. Protein kinases AKT1/PKB and PLK (Polo-like kinase) have been shown to phosphorylate and regulate the activity of this kinase. Alternatively spliced transcript variants encoding distinct isoforms have been reported. Transcript Variant: This variant (1) encodes the longer isoform (1).

Expand 1 Items
Loading...

Anti-MTMR4 Rabbit Polyclonal Antibody

Supplier: Thermo Scientific

MTMR, a member of the myotubularin family, encodes an intracellular protein of 1,195 amino acids, and shares approximately 47% sequence identity with MTMR3, spiking to over 70% identity in the catalytic domain and the double zinc finger (FYVE) motif. PCR analysis detects expression of MTMR4 in all human tissues examined except lung, small intestine, stomach, salivary gland, adrenal gland, and uterus. Subcellular localization of MTMR4 in transfected HeLa cells showed a perinuclear distribution, similar to that seen with MTMR3. MTMR4 dephosphorylates para-nitrophenylphosphate and phosphatidylinositol 3-phosphate.

Expand 1 Items
Loading...

Anti-SEMA3E Goat Polyclonal Antibody

Supplier: Thermo Scientific

Semaphorins are a large family of conserved secreted and membrane associated proteins which possess a semaphorin domain and a PSI domain in the N-terminal extracellular portion. Based on sequence and structural similarities, semaphorins are put into eight classes: invertebrates contain classes 1 and 2, viruses have class V, and vertebrates contain classes 3-7. Semaphorins serve as axon guidance ligands via multimeric receptor complexes, some containing plexin proteins. This gene encodes a class 4 semaphorin. This gene encodes a class 3 semaphorin. Multiple transcript variants encoding different isoforms have been found for this gene.

Expand 1 Items
Loading...

Anti-TMPRSS2 Goat Polyclonal Antibody

Supplier: Thermo Scientific

This gene encodes a protein that belongs to the serine protease family. The encoded protein contains a type II transmembrane domain, a receptor class A domain, a scavenger receptor cysteine-rich domain and a protease domain. Serine proteases are known to be involved in many physiological and pathological processes. This gene was demonstrated to be up-regulated by androgenic hormones in prostate cancer cells and down-regulated in androgen-independent prostate cancer tissue. The protease domain of this protein is thought to be cleaved and secreted into cell media after autocleavage. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.

Expand 1 Items
Loading...

Anti-IL2RG Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

Interleukin 2 (IL2) receptor gamma chain (IL5212R gamma) is a cell surface glycoprotein expressed by a variety of leukocytes including T cells, B cells, NK cells, monocytes, macrophages, and neutrophils. IL2R gamma is also known as CD132, common cytokine receptor gamma chain, and gamma c. IL2R gamma forms complexes with other cell surface proteins including CD25 (IL2R alpha), CD122 (IL2R beta), CD124 (IL4R alpha), CD127 (IL7R), and others. IL2R gamma complexed with other cell surface proteins forms receptors for the cytokines IL2, IL4, IL7, IL9, and IL15. Acting through the IL2R gamma containing complexes, these cytokines regulate lymphocyte development and activation. Chemical cross linking experiments reveal that IL2R gamma is able to bind cytokines only when complexed with these other cell surface proteins. In addition to interacting with other cell surface glycoproteins, IL2R gamma associates with several cytoplasmic tyrosine kinases including JAK3 (Janus Kinase 3), JAK1, Syc, and Lyc. Cytokine binding to the IL2R gamma containing receptor complexes activates these tyrosine kinases. Once activated, these tyrosine kinases phosphorylate their associated receptors, creating docking sites for signaling molecules such as PI 3 kinase. The activated tyrosine kinases also phosphorylate downstream regulators including STAT3 (Signal Transducer and Activator of Transcription 3), STAT5, and STAT6. The various cytokines that bind to IL2R gamma containing receptor complexes exert their effects through unique repertoires of cytoplasmic signaling molecules. IL2, IL7, and IL9 exert their effects through cascades, which activate STAT3 and STAT5, while IL4 activates STAT6. IL2 and IL15 exert their effects through cascades, which activate the MAP kinase cascade. IL7 exerts its effects through a cascade that results in VDJ immunoglobulin gene rearrangement.

Expand 1 Items
Loading...

Anti-PDPK1 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Serine/threonine kinase which acts as a master kinase, phosphorylating and activating a subgroup of the AGC family of protein kinases. Its targets include: protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), p70 ribosomal protein S6 kinase (RPS6KB1), p90 ribosomal protein S6 kinase (RPS6KA1, RPS6KA2 and RPS6KA3), cyclic AMP-dependent protein kinase (PRKACA), protein kinase C (PRKCD and PRKCZ), serum and glucocorticoid-inducible kinase (SGK1, SGK2 and SGK3), p21-activated kinase-1 (PAK1), protein kinase PKN (PKN1 and PKN2). Plays a central role in the transduction of signals from insulin by providing the activating phosphorylation to PKB/AKT1, thus propagating the signal to downstream targets controlling cell proliferation and survival, as well as glucose and amino acid uptake and storage. Negatively regulates the TGF-beta-induced signaling by: modulating the association of SMAD3 and SMAD7 with TGF-beta receptor, phosphorylating SMAD2, SMAD3, SMAD4 and SMAD7, preventing the nuclear translocation of SMAD3 and SMAD4 and the translocation of SMAD7 from the nucleus to the cytoplasm in response to TGF-beta. Activates PPARG transcriptional activity and promotes adipocyte differentiation. Activates the NF-kappa-B pathway via phosphorylation of IKKB. The tyrosine phosphorylated form is crucial for the regulation of focal adhesions by angiotensin II. Controls proliferation, survival, and growth of developing pancreatic cells. Participates in the regulation of Ca(2+) entry and Ca(2+)-activated K(+) channels of mast cells. Essential for the motility of vascular endothelial cells (ECs) and is involved in the regulation of their chemotaxis. Plays a critical role in cardiac homeostasis by serving as a dual effector for cell survival and beta-adrenergic response. Plays an important role during thymocyte development by regulating the expression of key nutrient receptors on the surface of pre-T cells and mediating Notch-induced cell growth and proliferative responses.

Expand 1 Items
Loading...

Anti-EIF2AK2 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (EIF2S1), this phosphorylation impairs the recycling of EIF2S1 between successive rounds of initiation leading to inhibition of translation which eventually results in shutdown of cellular and viral protein synthesis. Also phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11. In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteosomal degradation. Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding proinflammatory cytokines and IFNs. Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6. Can act as both a positive and negative regulator of the insulin signaling pathway (ISP). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2).

Expand 1 Items
Loading...

Anti-EIF2AK2 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

IFN-induced dsRNA-dependent serine/threonine-protein kinase which plays a key role in the innate immune response to viral infection and is also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation. Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1). Inhibits viral replication via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (EIF2S1), this phosphorylation impairs the recycling of EIF2S1 between successive rounds of initiation leading to inhibition of translation which eventually results in shutdown of cellular and viral protein synthesis. Also phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11. In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteosomal degradation. Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding proinflammatory cytokines and IFNs. Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6. Can act as both a positive and negative regulator of the insulin signaling pathway (ISP). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2).

Expand 1 Items
Loading...
Recommended for You