Order Entry
ContactUsLinkComponent
170771 results for Antibodies

You searched for: Antibodies

Antibodies

Searching for antibodies just got easier. VWR has gathered hundreds of thousands of antibodies from a multitude of suppliers to meet your application needs; all you have to do is input your required criteria and in seconds IgGy does the searching for you, delivering you the best options in antibody selection.

Anti-SATB1 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

Crucial silencing factor contributing to the initiation of X inactivation mediated by Xist RNA that occurs during embryogenesis and in lymphoma (By similarity). Binds to DNA at special AT-rich sequences, the consensus SATB1-binding sequence (CSBS), at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcriptional repressor controlling nuclear and viral gene expression in a phosphorylated and acetylated status-dependent manner, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes (e.g. PML at the MHC-I locus) and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Modulates genes that are essential in the maturation of the immune T-cell CD8SP from thymocytes. Required for the switching of fetal globin species, and beta- and gamma-globin genes regulation during erythroid differentiation. Plays a role in chromatin organization and nuclear architecture during apoptosis. Interacts with the unique region (UR) of cytomegalovirus (CMV). Alu-like motifs and SATB1-binding sites provide a unique chromatin context which seems preferentially targeted by the HIV-1 integration machinery. Moreover, HIV-1 Tat may overcome SATB1-mediated repression of IL2 and IL2RA (interleukin) in T-cells by binding to the same domain than HDAC1. Delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. Reprograms chromatin organization and the transcription profiles of breast tumors to promote growth and metastasis.

Expand 1 Items
Loading...

Anti-SATB1 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

Crucial silencing factor contributing to the initiation of X inactivation mediated by Xist RNA that occurs during embryogenesis and in lymphoma (By similarity). Binds to DNA at special AT-rich sequences, the consensus SATB1-binding sequence (CSBS), at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcriptional repressor controlling nuclear and viral gene expression in a phosphorylated and acetylated status-dependent manner, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes (e.g. PML at the MHC-I locus) and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Modulates genes that are essential in the maturation of the immune T-cell CD8SP from thymocytes. Required for the switching of fetal globin species, and beta- and gamma-globin genes regulation during erythroid differentiation. Plays a role in chromatin organization and nuclear architecture during apoptosis. Interacts with the unique region (UR) of cytomegalovirus (CMV). Alu-like motifs and SATB1-binding sites provide a unique chromatin context which seems preferentially targeted by the HIV-1 integration machinery. Moreover, HIV-1 Tat may overcome SATB1-mediated repression of IL2 and IL2RA (interleukin) in T-cells by binding to the same domain than HDAC1. Delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. Reprograms chromatin organization and the transcription profiles of breast tumors to promote growth and metastasis.

Expand 1 Items
Loading...

Anti-MTOR Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4. Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1.

Expand 1 Items
Loading...

Anti-MTOR Rabbit Polyclonal Antibody (Alexa Fluor® 647)

Supplier: Bioss

Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4. Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1.

Expand 1 Items
Loading...
Anti-IgG Goat Polyclonal Antibody

Anti-IgG Goat Polyclonal Antibody

Supplier: Rockland Immunochemical

Anti-Mouse IgG whole molecule is suitable for use in immunoelectrophoresis, western-blot, competitive western-blot, ELISA and competitive ELISA assays. Specific conditions for reactivity and signal detection should be optimized by the end user.

Expand 1 Items
Loading...

Anti-IgG Rabbit Polyclonal Antibody (Biotin)

Supplier: Rockland Immunochemical

This product is designed for immunofluorescence microscopy, fluorescence based plate assays (FLISA) and fluorescent western blotting. This product is also suitable for multiplex analysis, including multicolor imaging, utilizing various commercial platforms.

Expand 1 Items
Loading...

Anti-IgM µ Rabbit Polyclonal Antibody [clone: BM3]

Supplier: Rockland Immunochemical

Secondary Rabbit Anti-IgM mu chain Reacts with Rat

Expand 1 Items
Loading...
Anti-Contactin-6 Rabbit Polyclonal Antibody

Anti-Contactin-6 Rabbit Polyclonal Antibody

Supplier: Biosensis

The neural adhesion molecule Contactin-6, also known as NB-3, is a contactin/F3 subgroup member of immunoglobulin superfamily. It is expressed exclusively in the nervous system and mainly upregulated at the early postnatal stage during mouse brain development. Employing Northern blot analysis Kamei et al found that amongst different regions of the adult human nervous system cerebellum expressed highest level of NB-3 mRNA. The expression of NB-3 in the cerebellum increases until adulthood. In contrast, the expression in the cerebrum declines to a low level after postnatal day 7. NB-3 like other neural recognition molecules plays a vitally important role in axonal guidance during development, plasticity, and maintenance of synaptic connections in the adult brain. Cui et al recently showed that NB-3 acts as a novel Notch ligand to participate in oligodendrocyte generation. Furthermore, NB-3 triggers nuclear translocation of the Notch intracellular domain and promotes oligodendrogliogenesis from progenitor cells and differentiation of oligodendrocyte precursor cells via Deltex1. In primary oligodendrocytes, NB-3 increases myelin-associated glycoprotein transcripts. Hence, the NB-3/Notch signaling pathway may be worthwhile a closer examination for its potential for the treatment of demyelinating diseases. Human NB-3 shares with rat NB-3 86% identity in nucleotide sequences and 90% identity in amino acid sequences. FUNCTION: Contactins mediate cell surface interactions during nervous system development. Participates in oligodendrocytes generation by acting as a ligand of NOTCH1. Its association with NOTCH1 promotes NOTCH1 activation through the released notch intracellular domain (NICD) and subsequent translocation to the nucleus. Involved in motor coordination. SUBCELLULAR LOCATION: Cell membrane; lipid-anchor; GPI-anchor. ALTERNATIVE PRODUCTS: 2 named isoforms produced by alternative splicing. TISSUE SPECIFICITY: Expressed in brain. In brain, it is preferentially expressed in the accessory olfactory bulb, layers II/III and V of the cerebral cortex, piriform cortex, anterior thalamic nuclei, locus coeruleus of the pons and mesencephalic trigeminal nucleus and in Purkinje cells of the cerebellum. DEVELOPMENTAL STAGE: Highly expressed after birth, reaching a maximum at the postnatal day 7, and declines thereafter in the cerebrum, whereas it increases in the cerebellum to adulthood.

Expand 1 Items
Loading...

Hamster Whole Isotype Control (FITC (Fluorescein Isothiocyanate))

Supplier: Rockland Immunochemical

1.0mg. Fluorescein. No contaminating proteins are observed when assayed at a protein concentration of 20mg/mL against anti-whole serum antisera. Lyophilized product containing preservative and stabilizer.

Expand 1 Items
Loading...

Rat Whole IgG IgG Isotype Control (HRP (Horseradish Peroxidase))

Supplier: Rockland Immunochemical

1.0mg. Peroxidase. No contaminating proteins are observed when assayed at a protein concentration of 20mg/mL against anti-whole serum antisera. Lyophilized. Contains preservative and stabilizer.

Expand 1 Items
Loading...

Rat Whole IgG IgG Isotype Control (FITC (Fluorescein Isothiocyanate))

Supplier: Rockland Immunochemical

1.0mg. Fluorescein. No contaminating proteins are observed when assayed at a protein concentration of 20mg/mL against anti-whole serum antisera. Lyophilized. Contains preservative and stabilizer.

Expand 1 Items
Loading...

Anti-CLDN1 Rabbit Polyclonal Antibody

Supplier: Thermo Scientific

PA5-16833 targets Claudin 1 in IHC (P) and WB applications and shows reactivity with Canine, Human, mouse, Non-human primate, and Rat samples. The PA5-16833 immunogen is a synthetic peptide derived from the C-terminus of human Claudin-1. Claudin 1-8 proteins are a family of transmembrane proteins associated with tight junctions. Tight junctions are specialized regions of cell to cell contact; made up of network of strands to act as a molecular gasket for preventing the leakage of ions, water etc. between cells. They are abundant in luminal epithelial sheets where they maintain epithelial cell polarity. Different tissues exhibit different Claudin composition.

Expand 1 Items
Loading...
Anti-MYC Rabbit Polyclonal Antibody

Anti-MYC Rabbit Polyclonal Antibody

Supplier: Prosci

MYC is a multifunctional, nuclear phosphoprotein that plays a role in cell cycle progression, apoptosis and cellular transformation. It functions as a transcription factor that regulates transcription of specific target genes. Mutations, overexpression, rearrangement and translocation of this MYC gene have been associated with a variety of hematopoietic tumors, leukemias and lymphomas, including Burkitt lymphoma.The protein encoded by this gene is a multifunctional, nuclear phosphoprotein that plays a role in cell cycle progression, apoptosis and cellular transformation. It functions as a transcription factor that regulates transcription of specific target genes. Mutations, overexpression, rearrangement and translocation of this gene have been associated with a variety of hematopoietic tumors, leukemias and lymphomas, including Burkitt lymphoma. There is evidence to show that alternative translation initiations from an upstream, in-frame non-AUG (CUG) and a downstream AUG start site result in the production of two isoforms with distinct N-termini. The synthesis of non-AUG initiated protein is suppressed in Burkitt's lymphomas, suggesting its importance in the normal function of this gene.The protein encoded by this gene is a multifunctional, nuclear phosphoprotein that plays a role in cell cycle progression, apoptosis and cellular transformation. It functions as a transcription factor that regulates transcription of specific target genes. Mutations, overexpression, rearrangement and translocation of this gene have been associated with a variety of hematopoietic tumors, leukemias and lymphomas, including Burkitt lymphoma. There is evidence to show that alternative translation initiations from an upstream, in-frame non-AUG (CUG) and a downstream AUG start site result in the production of two isoforms with distinct N-termini. The synthesis of non-AUG initiated protein is suppressed in Burkitt's lymphomas, suggesting its importance in the normal function of this gene.

Expand 1 Items
Loading...
Anti-NR0B2 Rabbit Polyclonal Antibody

Anti-NR0B2 Rabbit Polyclonal Antibody

Supplier: Prosci

NR0B2 is an unusual orphan receptor that contains a putative ligand-binding domain but lacks a conventional DNA-binding domain. It is a member of the nuclear hormone receptor family, a group of transcription factors regulated by small hydrophobic hormones, a subset of which do not have known ligands and are referred to as orphan nuclear receptors. The protein has been shown to interact with retinoid and thyroid hormone receptors, inhibiting their ligand-dependent transcriptional activation. In addition, interaction with estrogen receptors has been demonstrated, leading to inhibition of function. Studies suggest that the protein represses nuclear hormone receptor-mediated transactivation via two separate steps: competition with coactivators and the direct effects of its transcriptional repressor function. The protein encoded by this gene is an unusual orphan receptor that contains a putative ligand-binding domain but lacks a conventional DNA-binding domain. The gene product is a member of the nuclear hormone receptor family, a group of transcription factors regulated by small hydrophobic hormones, a subset of which do not have known ligands and are referred to as orphan nuclear receptors. The protein has been shown to interact with retinoid and thyroid hormone receptors, inhibiting their ligand-dependent transcriptional activation. In addition, interaction with estrogen receptors has been demonstrated, leading to inhibition of function. Studies suggest that the protein represses nuclear hormone receptor-mediated transactivation via two separate steps: competition with coactivators and the direct effects of its transcriptional repressor function. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...

Anti-IgG Goat Polyclonal Antibody (Cy3.5®)

Supplier: Rockland Immunochemical

Secondary Goat Anti-IgG (H&L) Reacts with Rabbit (Lapine)

Expand 1 Items
Loading...

Anti-PDGFRA(Tyr754) Rabbit Polyclonal Antibody

Supplier: Bioss

Tyrosine-protein kinase that acts as a cell-surface receptor for PDGFA, PDGFB and PDGFC and plays an essential role in the regulation of embryonic development, cell proliferation, survival and chemotaxis. Depending on the context, promotes or inhibits cell proliferation and cell migration. Plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells. Required for normal skeleton development and cephalic closure during embryonic development. Required for normal development of the mucosa lining the gastrointestinal tract, and for recruitment of mesenchymal cells and normal development of intestinal villi. Plays a role in cell migration and chemotaxis in wound healing. Plays a role in platelet activation, secretion of agonists from platelet granules, and in thrombin-induced platelet aggregation. Binding of its cognate ligands - homodimeric PDGFA, homodimeric PDGFB, heterodimers formed by PDGFA and PDGFB or homodimeric PDGFC -leads to the activation of several signaling cascades; the response depends on the nature of the bound ligand and is modulated by the formation of heterodimers between PDGFRA and PDGFRB. Phosphorylates PIK3R1, PLCG1, and PTPN11. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, mobilization of cytosolic Ca(2+) and the activation of protein kinase C. Phosphorylates PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, and thereby mediates activation of the AKT1 signaling pathway. Mediates activation of HRAS and of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3 and STAT5A and/or STAT5B. Receptor signaling is down-regulated by protein phosphatases that dephosphorylate the receptor and its down-stream effectors, and by rapid internalization of the activated receptor.

Expand 1 Items
Loading...

Anti-RPS6KA1 Rabbit Polyclonal Antibody (Alexa Fluor® 555)

Supplier: Bioss

Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1. In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes. In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP. Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity. Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex. In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation. Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway. Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function. Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4).

Expand 1 Items
Loading...

Anti-RPS6KA3 Rabbit Polyclonal Antibody (Alexa Fluor® 488)

Supplier: Bioss

Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1. In fibroblast, is required for EGF-stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes. In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP. Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity. Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex. In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation. Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway. Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function. Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4).

Expand 1 Items
Loading...

Anti-RPS6KA3 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1. In fibroblast, is required for EGF-stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes. In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP. Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity. Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex. In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation. Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway. Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function. Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4).

Expand 1 Items
Loading...
Anti-VPREB1 Rabbit Polyclonal Antibody

Anti-VPREB1 Rabbit Polyclonal Antibody

Supplier: Prosci

VPREB1 belongs to the immunoglobulin superfamily and is expressed selectively at the early stages of B cell development, namely, in proB and early preB cells. This gene encodes the iota polypeptide chain that is associated with the Ig-mu chain to form a molecular complex which is expressed on the surface of pre-B cells. The complex is thought to regulate Ig gene rearrangements in the early steps of B-cell differentiation.CD179a (VpreB) is a 126 aa-long polypeptide with apparent MW of 16-18 kDa. It is expressed selectively at the early stages of B cell development, namely, in proB and early preB cells. CD179a has an Ig V domain-like structure, but lacks the last beta-strand (beta7) of a typical V domain. Instead, it has a carboxyl terminal end that shows no sequence homologies to any other proteins. CD179a associates non-covalently with CD179b (lambda5 or lambda-like) carrying an Ig C domain-like structure to form an Ig light chain-like structure, which is called the surrogate light chain or pseudo light chain. In this complex, the incomplete V domain of CD179a appears to be complemented by the extra beta7 strand of CD179b. On the surface of early preB cells, CD179a/CD179b surrogate light chain is disulfide-linked to membrane-bound Ig mu heavy chain in association with a signal transducer CD79a/CD79b heterodimer to form a B cell receptor-like structure, so-called preB cell receptor (preBCR). Though no CD179a-related human disease or pathology has been reported yet, the deficiency of other components of preB cell receptor such as CD179b, Ig mu heavy chain and CD79a has been shown to result in severe impairment of B cell development and agammaglobulinemia in human. PreBCR transduces signals for: 1) cellular proliferation, differentiation from the proB cell to preB cell stage, 2) allelic exclusion at the Ig heavy chain gene locus, and 3) promotion of Ig light chain gene rearrangements. Thus, preBCR functions as a checkpoint in early B cell development to monitor the production of Ig mu heavy chain through a functional rearrangement of Ig heavy chain gene as well as the potency of Ig mu heavy chain to associate with Ig light chain. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...

Anti-IgG Goat Polyclonal Antibody (TRITC (Tetramethylrhodamine Isothiocyanate))

Supplier: Rockland Immunochemical

Secondary Goat Anti-IgG F(ab')2 Reacts with Chicken

Expand 1 Items
Loading...

Anti-SAA Mouse Monoclonal Antibody [clone: 585]

Supplier: Genetex

The serum amyloid A family comprises a number of differentially expressed apolipoproteins, acute-phase SAA1 and SAA2, the former being the major component in plasma and constitutive SAAs. Although the liver is the primary site of synthesis of both SAA types extrahepatic production has been reported. The in vivo concentrations increase by as much as 1000 fold during inflammation. Several studies have expressed its importance in the diagnosis and monitoring of various diseases. Pathological SAA values are often detected in association with normal CRP concentrations; SAA rises earlier and more sharply than CRP. Recently, a broader view of SAA expression and function has been emerging. Expression studies show production of SAA proteins in histologically normal, atherosclerotic, Alzheimer, inflammatory, and tumour tissues. SAA has been found to have binding sites for high density lipoproteins, calcium, laminin, and heparin/heparin sulphate. Also adhesion motifs were identified and new functions affecting cell adhesion, migration, proliferation, and aggregation were discovered. These findings emphasize the importance of SAA in various physiological and pathological processes including inflammation, atherosclerosis, thrombosis, AA-amyloidosis, rheumatoid arthritis, and neoplasia. SAA has also a number of immunomodulatory roles, it can induce chemotaxis and adhesion molecule expression, has cytokine-like properties and can promote the upregulation of metalloproteinases. It enhances the binding of high density lipoprotein to macrophages and thus helps in the delivery of lipids to sites of injury for use in tissue repair, it is thus thought to be an integral part of the disease process.

Expand 1 Items
Loading...

Anti-SAA Mouse Monoclonal Antibody [clone: 132]

Supplier: Genetex

The serum amyloid A family comprises a number of differentially expressed apolipoproteins, acute-phase SAA1 and SAA2, the former being the major component in plasma and constitutive SAAs. Although the liver is the primary site of synthesis of both SAA types extrahepatic production has been reported. The in vivo concentrations increase by as much as 1000 fold during inflammation. Several studies have expressed its importance in the diagnosis and monitoring of various diseases. Pathological SAA values are often detected in association with normal CRP concentrations; SAA rises earlier and more sharply than CRP. Recently, a broader view of SAA expression and function has been emerging. Expression studies show production of SAA proteins in histologically normal, atherosclerotic, Alzheimer, inflammatory, and tumour tissues. SAA has been found to have binding sites for high density lipoproteins, calcium, laminin, and heparin/heparin sulphate. Also adhesion motifs were identified and new functions affecting cell adhesion, migration, proliferation, and aggregation were discovered. These findings emphasize the importance of SAA in various physiological and pathological processes including inflammation, atherosclerosis, thrombosis, AA-amyloidosis, rheumatoid arthritis, and neoplasia. SAA has also a number of immunomodulatory roles, it can induce chemotaxis and adhesion molecule expression, has cytokine-like properties and can promote the upregulation of metalloproteinases. It enhances the binding of high density lipoprotein to macrophages and thus helps in the delivery of lipids to sites of injury for use in tissue repair, it is thus thought to be an integral part of the disease process.

Expand 1 Items
Loading...

Anti-IgG Goat Polyclonal Antibody (Biotin)

Supplier: Rockland Immunochemical

This product is designed for immunofluorescence microscopy, fluorescence based plate assays (FLISA) and fluorescent western blotting. This product is also suitable for multiplex analysis, including multicolor imaging, utilizing various commercial platforms.

Expand 1 Items
Loading...

Anti-IgG Goat Polyclonal Antibody (Biotin)

Supplier: Rockland Immunochemical

This product has been assayed against 1.0 µg of Mouse IgG in a standard capture ELISA using Peroxidase Conjugated Streptavidin and ABTS (2,2’-azino-bis-[3-ethylbenthiazoline-6-sulfonic acid])

Expand 1 Items
Loading...

Anti-JNK1+JNK2+JNK3 (T183+T183+T221) Rabbit Polyclonal Antibody

Supplier: Bioss

Serine/threonine-protein kinase involved in various processes such as cell proliferation, differentiation, migration, transformation and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK8/JNK1. In turn, MAPK8/JNK1 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN, JDP2 and ATF2 and thus regulates AP-1 transcriptional activity. Phosphorylates the replication licensing factor CDT1, inhibiting the interaction between CDT1 and the histone H4 acetylase HBO1 to replication origins. Loss of this interaction abrogates the acetylation required for replication initiation. Promotes stressed cell apoptosis by phosphorylating key regulatory factors including p53/TP53 and Yes-associates protein YAP1. In T-cells, MAPK8 and MAPK9 are required for polarized differentiation of T-helper cells into Th1 cells. Contributes to the survival of erythroid cells by phosphorylating the antagonist of cell death BAD upon EPO stimulation. Mediates starvation-induced BCL2 phosphorylation, BCL2 dissociation from BECN1, and thus activation of autophagy. Phosphorylates STMN2 and hence regulates microtubule dynamics, controlling neurite elongation in cortical neurons. In the developing brain, through its cytoplasmic activity on STMN2, negatively regulates the rate of exit from multipolar stage and of radial migration from the ventricular zone. Phosphorylates several other substrates including heat shock factor protein 4 (HSF4), the deacetylase SIRT1, ELK1, or the E3 ligase ITCH.

Expand 1 Items
Loading...

Anti-RPS6KA1 Rabbit Polyclonal Antibody (Cy5.5®)

Supplier: Bioss

Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1. In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes. In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP. Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity. Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex. In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation. Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway. Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function. Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4).

Expand 1 Items
Loading...

Anti-MSH2 Rabbit Polyclonal Antibody

Supplier: Genetex

Component of the post-replicative DNA mismatch repair system (MMR). Forms two different heterodimers: MutS alpha (MSH2-MSH6 heterodimer) and MutS beta (MSH2-MSH3 heterodimer), which bind to DNA mismatches thereby initiating DNA repair. MSH2 seems to act as a scaffold for the other MutS homologs that provide substrate-binding and substrate-specificity. When bound, heterodimers bend the DNA helix and shield approximately 20 base pairs. MutS alpha acts mainly to repair base-base and single insertion-deletion mismatches that occur during replication, but can also repair longer insertion-deletion loops (IDLs), although with decreasing efficiency as the size of the extrahelical loop increases. MutS beta acts mainly to repair IDLs from 2 to 13 nucleotides in size, but can also repair base-base and single insertion-deletion mismatches. After mismatch binding, MutS alpha or beta form a ternary complex with a MutL heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. Both subunits bind ATP, but with differing affinities, and their ATPase kinetics are also very different. MSH6 binds and hydrolyzes ATP rapidly, whereas MSH2 catalyzes ATP at a substantially slower rate. Binding to a mismatched base pair suppresses MSH6-catalyzed ATP hydrolysis, but not the activity of MSH2. ATP binding to both subunits is necessary to trigger a change in MutS alpha interaction with mismatched DNA, converting MutS alpha into a sliding clamp capable of hydrolysis-independent movement along DNA, and also facilitates formation of ternary complexes containing MutS and MutL proteins and the mismatch. MutS beta also has a role in regulation of heteroduplex formation during mitotic and meiotic recombination. MutS beta binds to DNA flap structures predicted to form during recombination, and is required for 3' non-homologous tail removal (NHTR). MutS beta-binding alters the DNA conformation of its substrate at the ds/ssDNA junction and may facilitate its recognition and/or cleavage by the downstream nucleotide excision repair (NER) RAD1-RAD10 endonuclease.

Expand 1 Items
Loading...

Anti-CHEK2 Rabbit Polyclonal Antibody (Alexa Fluor® 350)

Supplier: Bioss

Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-strand breaks. May also negatively regulate cell cycle progression during unperturbed cell cycles. Following activation, phosphorylates numerous effectors preferentially at the consensus sequence [L-X-R-X-X-S/T]. Regulates cell cycle checkpoint arrest through phosphorylation of CDC25A, CDC25B and CDC25C, inhibiting their activity. Inhibition of CDC25 phosphatase activity leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. May also phosphorylate NEK6 which is involved in G2/M cell cycle arrest. Regulates DNA repair through phosphorylation of BRCA2, enhancing the association of RAD51 with chromatin which promotes DNA repair by homologous recombination. Also stimulates the transcription of genes involved in DNA repair (including BRCA2) through the phosphorylation and activation of the transcription factor FOXM1. Regulates apoptosis through the phosphorylation of p53/TP53, MDM4 and PML. Phosphorylation of p53/TP53 at 'Ser-20' by CHEK2 may alleviate inhibition by MDM2, leading to accumulation of active p53/TP53. Phosphorylation of MDM4 may also reduce degradation of p53/TP53. Also controls the transcription of pro-apoptotic genes through phosphorylation of the transcription factor E2F1. Tumor suppressor, it may also have a DNA damage-independent function in mitotic spindle assembly by phosphorylating BRCA1. Its absence may be a cause of the chromosomal instability observed in some cancer cells.

Expand 1 Items
Loading...

Anti-RPS6KA1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1. In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes. In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP. Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity. Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex. In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation. Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway. Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function. Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4).

Expand 1 Items
Loading...
Recommended for You