You searched for: Proteins and Peptides
Proteins are used in routine laboratory procedures such as binding enzymes or coupling peptides to carrier proteins. These kits, mixture solutions, and collagen matrices fulfill a myriad of essential laboratory functions for developing relationships between proteins and other cellular components. The stimulating proteins offered have various amino acid arrangements and functions to fulfill any sample manipulation for testing purposes in any field.
Human Recombinant VEGFR-1 (soluble) (from Insect Cells (Sf9))
Supplier: Adipogen
Recombinant human soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) is the naturally occurring form and is a glycosylated monomeric protein. The biological function of sVEGFR-1 seems to be an endogenous regulator of angiogenesis, binding VEGF with the same affinity as the full-length receptor. VEGFR-1 is a tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFB and PGF, and plays an essential role in the development of embryonic vasculature, the regulation of angiogenesis, cell survival, cell migration, macrophage function, chemotaxis and cancer cell invasion. It may play an essential role as a negative regulator of embryonic angiogenesis by inhibiting excessive proliferation of endothelial cells. It can promote endothelial cell proliferation, survival and angiogenesis in adulthood. Its function in promoting cell proliferation seems to be cell-type specific. Promotes PGF-mediated proliferation of endothelial cells, proliferation of some types of cancer cells, but does not promote proliferation of normal fibroblasts (in vitro). It has a very high affinity for VEGFA and relatively low protein kinase activity. It may function as a negative regulator of VEGFA signaling by limiting the amount of free VEGFA and preventing its binding to KDR. Modulates KDR signaling by forming heterodimers with KDR. Ligand binding leads to the activation of several signaling cascades. Activation of phospholipase C-gamma (PLCG) leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leading to activation of phosphatidylinositol kinase and the downstream signaling pathway. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Phosphorylates SRC and YES1 and may also phosphorylate CBL.
Expand 2 Items
Human Recombinant NF-kappaB (active) (from Insect Cells (Sf21))
Supplier: Adipogen
NF-kappaB is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappaB is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The heterodimeric p65-p50 complex is the most abundant complex. The dimers bind at kappaB sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappaB sites that they can bind with distinguishable affinity and specificity.Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappaB complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappaB inhibitor (I-kappaB) family. In a conventional activation pathway, I-kappaB is phosphorylated by I-kappaB kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappaB complex which translocates to the nucleus. NF-kappaB heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-kappaB p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappaB complex.
Expand 1 Items
Mouse Recombinant IL-2
Supplier: STEMCELL Technologies
Interleukin 2 (IL-2) is a monomeric cytokine that was originally identified as a T cell growth factor (Gaffen and Liu). It binds to a heterotrimeric receptor consisting of CD25, CD122, and CD132. Upon binding, it activates JAK3-, STAT5-, and AKT-dependent signaling pathways, which results in cellular proliferation and survival (Ma et al.). The majority of IL-2 is secreted by activated CD4+ and CD8+ T cells, although B cells and dendritic cells were found to produce IL-2 in small amounts. IL-2 downregulates immune responses to prevent autoimmunity during thymic development, influences the development of CD4+CD25+ regulatory T cells, and affects development of follicular helper T cells. IL-2 also controls inflammation by inhibiting Th17 differentiation (Banchereau et al.). Targeted deletions of the IL-2 gene in mice resulted in development of autoimmune hemolytic anemia, followed by ulcerative colitis. Similar effects were observed in mice that were deficient in IL-2 receptor α (Gaffen and Liu).
Expand 1 Items
Human Recombinant CD152 (from CHO cells)
Supplier: Adipogen
CD152 and CD28, together with their ligands B7-1 and B7-2, constitute one of the dominant costimulatory pathways that regulate T and B cell responses. CD152 and CD28 are structurally homologous molecules that are members of the immunoglobulin (Ig) gene superfamily. Both CD152 and CD28 are composed of a single Ig V-like extracellular domain, a transmembrane domain and an intracellular domain. CD152 and CD28 are both expressed on the cell surface as disulfide-linked homodimers or as monomers. CD152 was originally identified as a gene that was specifically expressed by cytotoxic T lymphocytes. However, CD152 transcripts have since been found in both Th1 and Th2, and CD4+ and CD8+ T cell clones. Whereas, CD28 expression is constitutive on the surfaces of 95% of CD4+ T cells and 50% of CD8+ T cells and is down regulated upon T cell activation, CD152 expression is upregulated rapidly following T cell activation and peaks approximately 24 hours following activation. Although both CD152 and CD28 can bind to the same ligands, CD152 binds to B71 and B72 with 20-100-fold higher affinity than CD28.
Expand 1 Items
Mouse Recombinant IL-19
Supplier: STEMCELL Technologies
Interleukin 19 (IL-19) is a member of the IL-10 cytokine family and is produced by keratinocytes, B cells, and monocytes (Romer et al.; Wolk et al.). Expression of IL-19 can be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) or lipopolysaccharide (LPS; Gallagher et al.). IL-19 is considered to be a proinflammatory cytokine, as it upregulates IL-6 and tumor necrosis factor alpha (TNF-α; Liao et al. 2002). IL-19 binds the IL-20 receptor complex (IL-20R) which comprises IL-20R alpha and IL-20R beta to activate the STAT3 pathway (Dumoutier et al.). IL-19 also induces T-helper cell differentiation towards a Th2 response, resulting in the production of IL-10 and additional IL-19 (Liao et al. 2002; Liao et al. 2004). IL-19 has been implicated in aging, vascular disease, Type I diabetes, and rheumatoid arthritis.
Expand 1 Items
Mouse Recombinant IL-6
Supplier: STEMCELL Technologies
Interleukin 6 (IL-6) is a pleiotropic growth factor with a wide range of biological activities in immune regulation, hematopoiesis, and oncogenesis. IL-6 is produced by a variety of cell types including T cells, B cells, monocytes and macrophages, fibroblasts, hepatocytes, vascular endothelial cells, and various tumor cell lines. On its own or in combination with other factors such as IL-2 and interferon-γ, IL-6 stimulates the proliferation of B cells, T cells, and hybridoma cells (Nordan et al.; Van Snick et al.; Gauldie et al.; Mihara et al.; Tanaka et al). In combination with cytokines such as IL-3, GM-CSF, and SCF, IL-6 has been shown to promote hematopoietic progenitor cell proliferation and differentiation in vitro. IL-6 signals through a cell surface type I cytokine receptor complex consisting of the ligand-binding IL-6α (CD126) and the signal-transducing gp130 subunits. The binding of IL-6 to its receptor system includes activation of the JAK/STAT signaling pathway (Mihara et al.; Peters et al; Tanaka et al.).
Expand 2 Items
Human Recombinant IL-15, ACF
Supplier: STEMCELL Technologies
Interleukin 15 (IL-15) is a four-alpha helix bundle cytokine with many similar properties to IL-2. The IL-15 receptor is a heterotrimeric receptor composed of IL-15Ra (the high-affinity receptor for IL-15), as well as IL-2/15Rb (CD122) and common gamma chain (CD132). IL-15 binds to IL-15Rα receptor and can then be presented in trans to IL-2/15Rb and common gamma chain on other cells. Trans-presentation is thought to be the major mechanism by which IL-15-mediated responses occur in mice, although may not be necessary in humans (Castillo et al.). The cytoplasmic domains of IL-2/15Rb and common gamma chain mediate signaling to activate JAK/STAT and PI3K pathways. IL-15 supports the survival and proliferation of naïve CD4+ and CD8+ T cells, and promotes homeostasis of memory T cells. IL-15 also promotes the survival and differentiation of NK cells and regulates their cytolytic activity (Ma et al.). This product is animal component-free.
Expand 3 Items
Mouse Recombinant M-CSF (E.coli-expressed), His tag
Supplier: STEMCELL Technologies
Macrophage colony-stimulating factor (M-CSF) is a homodimeric glycoprotein growth factor that regulates proliferation and differentiation of myeloid hematopoietic progenitors to mononuclear phagocytic cell lineages, including monocytes, macrophages, and osteoclasts. M-CSF is a crucial factor for the development of tissue-resident macrophages in most tissues (Ginhoux andamp; Jung). It is required for the maturation and activation of monocytes and macrophages, and regulates inflammatory responses in conjunction with other stimuli such as IFN-γ, LPS, and IL-4 (Murray et al.). M-CSF is also required for bone resorption by osteoclasts, and is involved in the development and regulation of placenta, mammary gland, and brain. M-CSF is produced by monocytes, fibroblasts, osteoclasts, stromal cells, endothelial cells, and tumor cells (Chockalingam andamp; Ghosh). M-CSF exerts its biological effects by signaling through a receptor tyrosine kinase (CSF-1R or M-CSF-R) encoded by the c-fms proto-oncogene (Hamilton). CSF-1R shares similar structural features with other growth factor receptors, including the stem cell factor (SCF) receptor, platelet-derived growth factor receptor (PDGF-R), and Flt3/Flk-2 receptor tyrosine kinase. Stimulation of the CSF-1R upon binding to M-CSF activates MAPK, PI3K, and PLCγ signaling pathways (Chockalingam andamp; Ghosh). Human and mouse M-CSF sequences are highly conserved both at nucleotide and amino acid levels (80% homology; DeLamarter et al.).
Expand 3 Items
HIV Protease FRET Substrate I, DABCYL-EDANS
Supplier: Anaspec Inc
DABCYL-GABA-Ser-Gln-Asn-Tyr-Pro-Ile-Val-Gln-EDANS is also called HIV protease substrate I in some literature. It is widely used for the continuous assay for HIV protease activity. The 11-kD protease (PR) encoded by the human immunodeficiency virus 1 (HIV-1) is essential for the correct processing of viral polyproteins and the maturation of infectious virus, and is therefore a target for the design of selective acquired immunodeficiency syndrome (AIDS) therapeutics. The FRET-based fluorogenic substrate is derived from a natural processing site for HIV-1 PR. Incubation of recombinant HIV-1 PR with the fluorogenic substrate resulted in specific cleavage at the Tyr-Pro bond and a time-dependent increase in fluorescence intensity that is linearly related to the extent of substrate hydrolysis. The fluorescence quantum yields of the HIV-1 PR substrate in the FRET assay increased by 40.0- and 34.4-fold, respectively, per mole of substrate cleaved. Because of its simplicity and precision in the determination of reaction rates required for kinetic analysis, this substrate offers many advantages over the commonly used HPLC or electrophoresis-based assays for peptide substrate hydrolysis by retroviral PRs. Abs/Em = 340nm/490nm.
Sequence:DABCYL-GABA-SQNYPIVQ-EDANS
MW:1532.5 Da
% peak area by HPLC:95
Storage condition:-20° C
Expand 1 Items
Human Recombinant GDNF, ACF
Supplier: STEMCELL Technologies
Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor and a member of the tumor growth factor (TGF)-beta superfamily. The GDNF family of growth factors also includes neurturin, persephin, and artemin, which have seven conserved cysteine residues called cysteine-knot (Treanor et al.). GDNF family ligands signal through binding to specific GDNF-family receptor-α (GFRα) co-receptors and activate the RET receptor tyrosine kinase (Durbec et al.). Four different forms of GFRα co-receptors have been characterized (GFRα 1-4) out of which GDNF binds specifically to GFRα1 prior to forming a complex with RET (Airaksinen and Saarma). GDNF is known to promote survival and morphological differentiation of midbrain dopaminergic neurons in both in vivo and in vitro studies and increase their high-affinity dopamine uptake (Granholm et al.; Lin et al.). GDNF has also been shown to have restorative effects on dying dopaminergic neurons in response to degenerative toxins (Aoi et al.). GDNF, together with Human Recombinant BDNF (brain-derived neurotrophic factor; Catalog #78005), BrainPhys™ Neuronal Medium (Catalog #05790), and other supplements, can be used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into neurons (Bardy et al.). This product is animal component-free.
Expand 2 Items
Human Recombinant PDGF-AA
Supplier: STEMCELL Technologies
Platelet-derived growth factor (PDGF) is a dimeric glycoprotein consisting of two disulfide bridge-stabilized polypeptide chains, A and B, which are assembled as heterodimers (PDGF-AB) or homodimers (PDGF-AA and PDGF-BB) (Fretto et al.; Westermark and Heldin). PDGF signals through the receptor tyrosine kinases PDGFRalpha and PDGFRbeta. It has been shown that PDGF-induced migration involves signaling pathways involving MEK/ERK, EGFR, Src, and PI3K/AKT (Kim et al.). PDGF is a potent mitogen for cells of mesenchymal origin, such as fibroblasts, glial cells, and vascular smooth muscle cells. PDGF has been implicated in pathogenesis of atherosclerosis, glomerulonephritis, cancer, and in the contraction of vascular smooth muscle cells of rat aortic tissues (Fretto et al.; Sachinidis et al.). It has been suggested that PDGF-AA is an important autocrine regulator of vascular endothelial growth factor (VEGF) expression in non-small cell lung carcinomas (Shikada et al.). PDGF-AA also mediates proliferation of oligodendrocyte progenitor cells and oligodendrocyte lineage differentiation through the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) (Hu et al.). PDGF-AA is commonly used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into oligodendrocyte precursor cells (Piao et al.).
Expand 1 Items
Human Recombinant CNTF, ACF
Supplier: STEMCELL Technologies
Ciliary neurotrophic factor (CNTF) is a neurotrophic factor that belongs to the four-helix bundle cytokine family and is structurally related to interleukin 6 (IL-6), interleukin 11 (IL-11), leukemia inhibitory factor (LIF), and oncostatin M (OSM). CNTF binds to its receptor CNFTRα and induces formation of a heterodimer of the signal transducing IL-6 receptor gp130 and LIF receptor (LIFR)-β, which triggers JAK/STAT, ERK, and PI3K signaling cascades (Schuster et al.). CNTF plays an important role in neurogenesis and the differentiation of neural stem cells and has been suggested to possess a therapeutic role in treating neurological disorders (Ding et al.; Oppenheim et al.). CNTF has also been shown to protect rod photoreceptors from light-induced damage and have therapeutic effects on retinal degenerative diseases caused by genetic defect or damage induced by toxins, autoantibodies, or strong light (Pernet et al.; Rhee et al.). Another therapeutic role of CNTF has been reported in protecting oligodendrocytes from death induced by apoptosis (Louis et al.). Additionally, CNTF is commonly used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into astrocytes (Krencik and Zhang). This product is animal component-free.
Expand 2 Items
Human Recombinant IL-11
Supplier: STEMCELL Technologies
Interleukin 11 (IL-11) is a pleiotropic cytokine with effects on various tissues including the bone marrow, brain, and intestinal mucosa (Du andamp; Williams). It belongs to the IL-6 family of cytokines that share a common signal transducer, gp130. IL-11 induces the proliferation of hematopoietic stem cells (Lemoli et al.) and megakaryocytic progenitor cells (Bruno et al.), the maturation of megakaryocytes (Burstein et al.), and the production of platelets (Neben et al.). IL-11 is produced by a variety of cell types including hematopoietic cells, mesenchymal cells, epithelial cells, and neuronal cells. It was first cloned from a cDNA library of the human bone marrow-derived stromal cell line KM-102 (Kawashima et al.). The binding of IL-11 to its receptor induces heterodimerization with the gp130 subunit and activation of JAK tyrosine kinases. IL-11 was the first pharmacologic agent approved for the treatment of chemotherapy-induced thrombocytopenia. IL-11 also plays a role in cancer progression by inducing the proliferation of epithelial cancer cells and the survival of metastatic cells at distant organs. Recently, IL-11 has gained interest for its role in the pathogenesis of diseases in dysregulated mucosal homeostasis associated with STAT3 upregulation, including gastrointestinal cancers (Putoczki et al.).
Expand 2 Items
Human Recombinant GM-CSF (E. coli-expressed)
Supplier: STEMCELL Technologies
Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes the proliferation and differentiation of hematopoietic progenitor cells and the generation of neutrophils, eosinophils, and macrophages. In synergy with other cytokines such as stem cell factor, IL-3, erythropoietin, and thrombopoietin, it also stimulates erythroid and megakaryocyte progenitor cells (Barreda et al.). GM-CSF is produced by multiple cell types, including stromal cells, Paneth cells, macrophages, dendritic cells (DCs), endothelial cells, smooth muscle cells, fibroblasts, chondrocytes, and Th1 and Th17 T cells (Francisco-Cruz et al.). The receptor for GM-CSF (GM-CSFR) is composed of two subunits: the cytokine-specific α subunit (GMRα; CD116) and the common subunit βc (CD131) shared with IL-3 and IL-5 receptors (Broughton et al.). GM-CSFR is expressed on hematopoietic cells, including progenitor cells and immune cells, as well as non-hematopoietic cells. Recombinant human GM-CSF (rhGM-CSF) promotes the production of myeloid cells of the granulocytic (neutrophils, eosinophils and basophils) and monocytic lineages in vivo. It has been tested for mobilization of hematopoietic progenitor cells and for treating chemotherapy-induced neutropenia in patients. GM-CSF is able to stimulate the development of DCs that ingest, process, and present antigens to the immune system (Francisco-Cruz et al.).
Expand 1 Items
Human Recombinant Galectin-1
Supplier: STEMCELL Technologies
Galectin-1 (Gal1) was the first characterized member of the galectin family of galactosidase-binding proteins, with over 15 mammalian galectins identified (Camby et al.; Salatino et al.). Gal1 comes in two forms: the oxidized monomer that acts as a cytokine, and the reduced dimer that acts as a lectin (Gaudet et al.). This product is in the dimer form. This cytokine is expressed in many tissues and has an immunosuppressive role in affecting T cell homeostasis by various mechanisms such as regulating apoptosis, cytokine secretion, cell adhesion, cell proliferation, and other effects (Camby et al.; Garín et al.; Gaudet et al.; Salatino et al.). In addition, Gal1 is thought to also play a role in axonal regeneration after injuries (Camby et al.; Garín et al.; Gaudet et al.; Salatino et al.). There are several therapeutic applications suggested for Gal1; overexpression has been suggested as a therapy for autoimmune and inflammatory diseases and enhancing axonal regeneration in injured nerves (Camby et al.; Gaudet et al.). In contrast, inhibition of Gal1 has been suggested to prevent tumor metastasis and cancer progression, as it may aid in cell adhesion, migration, and immune escape of cancer cells (Camby et al.).
Expand 1 Items
Human Recombinant GM-CSF, ACF
Supplier: STEMCELL Technologies
Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes the proliferation and differentiation of hematopoietic progenitor cells and the generation of neutrophils, eosinophils, and macrophages. In synergy with other cytokines such as stem cell factor, IL-3, erythropoietin, and thrombopoietin, it also stimulates erythroid and megakaryocyte progenitors (Barreda et al.). GM-CSF is produced by multiple cell types, including stromal cells, Paneth cells, macrophages, dendritic cells (DCs), endothelial cells, smooth muscle cells, fibroblasts, chondrocytes, and Th1 and Th17 T cells (Francisco-Cruz et al.). The receptor for GM-CSF (GM-CSFR) is composed of two subunits: the cytokine-specific α subunit (GMRα; CD116) and the common subunit βc (CD131) shared with IL-3 and IL-5 receptors (Broughton et al.). GM-CSFR is expressed on hematopoietic cells, including progenitor cells and immune cells, as well as non-hematopoietic cells. Recombinant human GM-CSF (rhGM-CSF) promotes the production of myeloid cells of the granulocytic (neutrophils, eosinophils and basophils) and monocytic lineages in vivo. It has been tested for mobilization of hematopoietic progenitor cells and for treating chemotherapy-induced neutropenia in patients. GM-CSF is able to stimulate the development of DCs that ingest, process, and present antigens to the immune system (Francisco-Cruz et al.). This product is animal component-free.
Expand 1 Items
Human Recombinant IL-21, ACF
Supplier: STEMCELL Technologies
Interleukin 21 (IL-21) is a pleiotropic cytokine that is composed of four α-helical bundles and primarily produced by natural killer T (NKT) cells, T follicular helper (Tfh) cells, and Th17 cells (Spolski and Leonard 2008). IL-21 signals via heterodimers of the IL-21 receptor (IL-21R) and the IL2RG-encoded common cytokine receptor γ-chain (Parrish-Novak et al.; Ozaki K et al. 2000), and utilizes the JAK/STAT, MAPK, and PI3K pathways (Spolski and Leonard 2014). IL-21 has been shown to have a critical role in regulating immunoglobulin production and differentiation of the pro-inflammatory Th17 population of cells (Ozaki et al. 2002; Nurieva et al.). Additionally, IL-21 specifically sustains CD8+ T cell effector activity and provides a mechanism of CD4+ T cell help during chronic viral infection (Elsaesser et al.). IL-21 signaling was also found critical for the development of type 1 diabetes in NOD mice (Sutherland et al.) and control of T cell autoimmunity by regulatory B cells (Yoshizaki et al.). This product is animal component-free.
Expand 2 Items
Lipopolysaccharide from E. coli (O55:B5)
Supplier: STEMCELL Technologies
Trigger a variety of immunological responses with E. coli Lipopolysaccharide O55:B5 (S-form), a lipopolysaccharide (LPS) derived from the O55:B5 serotype of the Gram-negative bacteria and nbsp Escherichia coli. Composed of a lipid A, a core oligosaccharide, and an O antigen, LPS are glycolipid constituents that reside on the outer membranes of gram-negative bacteria (Kitchens RL et al.). LPS protects bacteria against bile salts and lipophilic antibiotics by maintaining the outer integrity of the cell membrane (Bäckhed F et al.). E. coli lipopolysaccharide O55:B5 (S-form), in particular, is predominantly recognized by toll-like receptor 4 (TLR4), which leads to the activation of NF-κβ, a protein complex which plays a key role in regulating immune response (Kuzmich N et al.). Activation of NF-κβ can trigger increased production of pro-inflammatory cytokines IL-1 and TNF-α by macrophages (Matuschak GM et al.). This LPS can also interact with CD14 to activate phospholipase Cγ2 and kinases of the Src family, trigger influxes of extracellular Ca2+, as well as calcineurin-dependent translocation of the nuclear factor of activated T cells (NFAT) family of transcription factors (Li CC et al.). When added to ImmunoCult™-SF macrophage medium (Catalog #10961), stimulation with lipopolysaccharide from E. coli (O55:B5) and IFN-γ supports the polarization to M1 (classically activated) macrophages. Warning: This product is highly pyrogenic. Avoid all means by which the product may enter the bloodstream.
Expand 1 Items
Human Recombinant IL-34, His tag
Supplier: STEMCELL Technologies
Interleukin 34 (IL-34) is well known for its ability to induce the formation of colony-forming unit macrophages in human bone marrow cell cultures (Foucher et al.; Wei et al.). This dimeric glycoprotein is a member of the short-chain helical hematopoietic cytokine family (Baghdadi et al.; Foucher et al.), and exists in two isoforms that differ by a single glutamine (Chen et al.; Foucher et al; Wei et al.). IL-34 interacts with M-CSF to trigger tyrosine phosphorylation of the receptor and ERK1/2 pathways. (Wang et al.; Wei et al.). It is expressed in many tissues (heart, brain, lung, liver, kidney, thymus, testes, ovary, small intestine, prostate, and colon), with the highest expression in the spleen. In combination with RANKL (MSPP-78214), IL-34 induces osteoclast differentiation (Chen et al.; Foucher et al.). IL-34 expression is decreased in Alzheimer’s disease and atopic dermatitis, while high levels of IL-34 are found in many types of cancer correlated with poor prognosis, chronic heart failure or coronary artery disease, inflammatory bowel disease, influenza A infection, during acute liver transplant rejection or in non-alcoholic fatty liver disease, and with rheumatoid arthritis (Baghdadi et al.). It is therefore a possible pharmacological target for treating bone or inflammatory diseases (Chen et al.). This protein contains a His-residue tag at the carboxyl end of the polypeptide chain, and the protein was purified as a homodimer consisting of 39 kDa monomers (Lin et al.).
Expand 1 Items
Human Recombinant BDNF
Supplier: STEMCELL Technologies
Brain-derived neurotrophic factor (BDNF), like nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), is a member of the NGF family of neurotrophins, which are required for the differentiation and survival of specific neuronal subpopulations in both the central and the peripheral nervous systems (Minichiello and Klein; Minichiello et al.). BDNF binds with high affinity to the tropomyosin receptor kinase B (TrkB), and activates AKT and ERK pathways (Mattson et al.). It is expressed in the hippocampus, cortex, and synapses of the basal forebrain. BDNF acts as a survival factor for human embryonic stem cells when plated on either feeder cells or Corning® Matrigel® (Pyle et al.). BDNF regulates synaptic transmission and plasticity at adult synapses in the central nervous system, and contributes to adaptive neuronal responses including long-term potentiation, long-term depression, certain forms of short-term synaptic plasticity, and homeostatic regulation of neuronal excitability (Reichardt). It also has a role in neurogenesis by promoting survival and growth of dorsal root ganglion cells, and hippocampal and cortical neurons (Binder and Scharfman). BDNF, together with glial cell line-derived neurotrophic factor (GDNF) and other supplements, is commonly used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into neurons (Brafman).
Expand 1 Items
Human Recombinant IL-13
Supplier: STEMCELL Technologies
Interleukin 13 (IL-13) is a cytokine important in type 2 immune responses and is expressed by T helper type 2 (Th2) cells and group 2 innate lymphoid cells (ILC2s) (Pulendran and Artis). IL-13 binds a receptor composed of IL-4Ra and IL-13Ra1 or IL-13Ra2 (Wynn 2003). IL-13 receptor is expressed on B cells and promotes B cell proliferation, induces class switching to IgG4 and IgE, and functions in the recruitment and activation of IgE-producing B cells (Hershey). The receptor is also expressed on basophils, eosinophils, mast cells, endothelial cells, fibroblasts, monocytes, macrophages, respiratory epithelial cells, and smooth muscle cells (Hershey). Signaling through the IL-13 receptor activates the JAK/STAT and IRS-1/IRS-2 pathways. in vivo, IL-13 has a role in resistance to extracellular helminth parasites by regulating gastrointestinal parasite expulsion, as well as in airway hyperresponsiveness, allergic inflammation, tissue remodeling, tumor cell growth, and fibrosis (Wynn 2015). Secreted IL-13 is a protein consisting of 112 amino acids with a molecular mass of 10 kDa (Hershey). Human IL-13 is not species-specific but has greater activity on human cells compared to mouse cells (Hershey).
Expand 2 Items
Mouse Recombinant VEGF-164
Supplier: STEMCELL Technologies
Vascular endothelial growth factor (VEGF) is a heparin-binding homodimeric glycoprotein involved in vasculogenesis and angiogenesis. VEGF binds to FLT1 (VEGFR-1) and KDR (VEGFR-2), and activates Raf/MEK/ERK and PI3K/AKT pathways (Ferrara et al.). VEGF exists in multiple isoforms that result from alternative splicing of VEGF mRNA in the terminal exon. Proximal splice-site selection in exon 8 results in pro-angiogenic VEGFxxx isoforms (xxx is the number of amino acids), whereas distal splice-site selection results in anti-angiogenic VEGFxxxb isoforms (Nowak et al.). VEGF plays an important role in neurogenesis both in vitro and in vivo (Storkebaum et al.). It has neurotrophic effects on neurons of the central nervous system, and it promotes growth and survival of dopaminergic neurons and astrocytes. VEGF also promotes growth and survival of vascular endothelial cells, monocyte chemotaxis, and colony formation by granulocyte-macrophage progenitor cells (Ferrara et al.). Various splice variants of VEGF exist, with different functions. For example, it has been shown that VEGF isoform VEGF-164(165) and not VEGF-120(121) induces inflammation, stimulates intracellular adhesion molecule (ICAM)-1 expression on endothelial cells, and induces chemotaxis of monocytes (Usui et al.).
Expand 1 Items
Mouse/Rat Recombinant RANTES (CCL5)
Supplier: STEMCELL Technologies
RANTES (regulated upon activation, normal T cell expressed and secreted), also known as CCL5, is a member of the CC family of chemokines and is able to recruit leukocytes to sites of inflammation (Schall et al.). RANTES is secreted by T lymphocytes, macrophages, platelets, synovial fibroblasts, tubular epithelium, and certain types of tumor cells (Aldinucci and Colombatti; Soria and Ben-Baruch). This chemokine exerts its effect by interacting with the chemokine receptors CCR1, CCR3, CCR4, and CCR5. RANTES plays an active role in recruiting a variety of leukocytes into inflammatory sites, including T cells, macrophages, eosinophils, and basophils. In collaboration with certain cytokines that are released by T cells such as IL-2 and IFN-γ, RANTES also induces the activation and proliferation of NK cells to generate CC chemokine-activated killer cells, which are highly cytolytic (Lv et al.; Maghazachi et al.). It has been shown that RANTES produced by CD8+ T cells inhibits HIV infection of primary human peripheral blood mononuclear cells (Appay and Rowland-Jones; Cocchi et al.).
Expand 1 Items
Human Recombinant PDGF-DD
Supplier: STEMCELL Technologies
The platelet-derived growth factor (PDGF) family has five heparin-binding members that assemble into four homodimers (PDGF-AA, PDGF-BB, PDGF-CC, and PDGF-DD) and one heterodimer (PDGF-AB; Fretto et al.; Li and Eriksson). PDGF signals through the receptor tyrosine kinases PDGFRα and PDGFRβ. It has been shown that PDGF-induced migration involves signaling pathways involving MEK/ERK, EGFR, Src, and PI3K/AKT (Kim et al.). PDGF is a potent mitogen for cells of mesenchymal origin, such as fibroblasts, glial cells, and vascular smooth muscle cells. PDGF has been implicated in pathogenesis of atherosclerosis, glomerulonephritis, cancer, and in the contraction of vascular smooth muscle cells of rat aortic tissues (Fretto et al.; Sachinidis et al.). PDGF-DD promotes growth and survival of renal artery smooth muscle cells and lens epithelial cells, and can act as a macrophage chemoattractant (Changsirikulchai et al.; Lokker et al.; Ray et al.; Uutela et al.).
Expand 1 Items
Human Recombinant LIF, ACF
Supplier: STEMCELL Technologies
Leukemia inhibitory factor (LIF) is an interleukin 6 class cytokine that regulates a broad variety of developmental functions. After LIF binds to LIF receptor (LIFR), LIFR associates with gp130 and activates JAK/STAT and MAPK signaling (Auernhammer and Melmed; Suman et al.). LIFR activation of STAT3 is essential for maintaining the mouse embryonic stem cell phenotype (Niwa et al.). Produced by the endometrium, LIF plays an important autocrine and paracrine role in implantation by regulating proliferation, invasion, and differentiation of trophoblasts following blastocyst attachment (Auernhammer and Melmed; Suman et al.). Human LIF can be used for the maintenance of mouse embryonic stem cells, however mouse LIF cannot bind to the human receptor, thus rendering mouse LIF inactive (Dahéron et al.). LIF is produced by CD4+ and activated regulatory T cells, and promotes Foxp3 expression, while repressing Th17 lineage-specific genes (Metcalfe). LIF is also secreted by mesenchymal stromal cells, where it supports hematopoiesis and immune modulation (Nasef et al.). This product is animal component-free.
Expand 2 Items
Human Recombinant BDNF, ACF
Supplier: STEMCELL Technologies
Brain-derived neurotrophic factor (BDNF), like nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), is a member of the NGF family of neurotrophins, which are required for the differentiation and survival of specific neuronal subpopulations in both the central and the peripheral nervous systems (Minichiello and Klein; Minichiello et al.). BDNF binds with high affinity to the TRKB kinase receptor, and activates AKT and ERK pathways (Mattson et al.). It is expressed in hippocampus, cortex, and synapses of the basal forebrain. BDNF acts as a survival factor for human embryonic stem cells when plated on either feeder cells or Corning® Matrigel® (Pyle et al.). BDNF regulates synaptic transmission and plasticity at adult synapses in the central nervous system, contributes to adaptive neuronal responses including long-term potentiation, long-term depression, certain forms of short-term synaptic plasticity, as well as homeostatic regulation of neuronal excitability (Reichardt). It also has a role in neurogenesis by promoting survival and growth of dorsal root ganglion cells, and hippocampal and cortical neurons (Binder and Scharfman). BDNF, together with glial cell-derived neurotrophic factor (GDNF) and other supplements, is commonly used to differentiate human pluripotent stem cell (hPSC)-derived neural progenitor cells into neurons (Brafman). This product is animal component-free.
Expand 2 Items
Mouse Recombinant G-CSF
Supplier: STEMCELL Technologies
Granulocyte colony-stimulating factor (G-CSF) is a member of the CSF family of glycoproteins that regulate hematopoietic cell proliferation, differentiation, and function. It is a key cytokine involved in the production of neutrophils and the stimulation of granulocyte colony formation from hematopoietic progenitor cells (Metcalf and Nicola). G-CSF causes a range of effects including a transient reduction of SDF-1 expression (Petit et al.), the activation of metalloproteases that cleave VCAM-1 (Levesque et al.), and the release of norepinephrine from the sympathetic nervous system (Katayama et al.), leading to the release or mobilization of hematopoietic stem cells from the bone marrow into the periphery. The G-CSF receptor is expressed on a variety of hematopoietic cells, including myeloid-committed progenitor cells, neutrophils, granulocytes, and monocytes. In addition to hematopoietic cells, G-CSF is also expressed in cardiomyocytes, neuronal cells, mesothelial cells, and endothelial cells. Mouse G-CSF was first purified from cultures of the WEHI-3B myelomonocytic leukemia cell line as the inducer of the terminal differentiation of WEHI-3B and other myeloid leukemia cell lines (Nicola et al.). It was later cloned in monkey COS cells from a cDNA library prepared with mRNA derived from mouse fibrosarcoma NFSA cells that produce G-CSF constitutively (Tsuchiya et al.). Binding of G-CSF to its receptor leads to activation of the JAK/STAT, MAPK, PI3K, and AKT signal transduction pathways.
Expand 1 Items
Human Recombinant SCF, ACF
Supplier: STEMCELL Technologies
Stem cell factor (SCF) is an early-acting cytokine that plays a pivotal role in the regulation of embryonic and adult hematopoiesis. SCF promotes cell survival, proliferation, differentiation, adhesion, and functional activation of cells at multiple levels of the hematopoietic hierarchy. Together with other cytokines such as thrombopoietin and Flt3/Flk-2 Ligand, SCF is commonly used to promote expansion of primitive hematopoietic stem cells and multi-potent progenitor cells in culture (Martin et al.; Kent et al.). In synergy with various growth factors, including IL-2, IL-3, IL-6, IL-7, G-CSF, and erythropoietin, SCF increases proliferation and differentiation of myeloid and erythroid progenitor cells and a subset of lymphoid progenitor cells (Broudy). SCF is also a primary growth and activation factor for mast cells and eosinophils. SCF exists in two biologically active splice forms: a soluble and a transmembrane isoform. Upon binding to its receptor (c-Kit tyrosine kinase receptor; CD117), it activates PI3K, JAK/STAT, and MAPK pathways. SCF and signaling from c-Kit have also been reported to play an important role in pigmentation, fertility, vasculogenesis, motility of the gut via c-Kit positive interstitial cells of Cajal, and in the migration of neuronal stem and progenitor cells to sites of injury in the brain. This product is animal component-free.
Expand 1 Items
Human Recombinant M-CSF, ACF
Supplier: STEMCELL Technologies
Macrophage colony-stimulating factor (M-CSF) is a homodimeric glycoprotein growth factor that regulates proliferation and differentiation of myeloid hematopoietic progenitors to mononuclear phagocytic cell lineages, including monocytes, macrophages, and osteoclasts. M-CSF is a crucial factor for the development of tissue-resident macrophages in most tissues (Ginhoux andamp; Jung). It is required for the maturation and activation of monocytes and macrophages, and regulates inflammatory responses in conjunction with other stimuli such as IFN-γ, LPS, and IL-4 (Murray et al.). M-CSF is also required for bone resorption by osteoclasts, and is involved in the development and regulation of placenta, mammary gland, and brain. M-CSF is produced by monocytes, fibroblasts, osteoclasts, stromal cells, endothelial cells, and tumor cells (Chockalingam andamp; Ghosh). M-CSF exerts its biological effects by signaling through a receptor tyrosine kinase (CSF-1R or M-CSF-R) encoded by the c-fms proto-oncogene (Hamilton). CSF-1R shares similar structural features with other growth factor receptors, including the stem cell factor (SCF) receptor, platelet-derived growth factor receptor (PDGF-R), and Flt3/Flk-2 receptor tyrosine kinase. Stimulation of the CSF-1R upon binding to M-CSF activates MAPK, PI3K, and PLCγ signaling pathways (Chockalingam andamp; Ghosh). Human and mouse M-CSF sequences are highly conserved both at nucleotide and amino acid levels (80% homology; DeLamarter et al.). This product is animal component-free.
Expand 2 Items
Human Recombinant PDGF-CC
Supplier: STEMCELL Technologies
The platelet-derived growth factor (PDGF) family has five heparin-binding members that assemble into four homodimers (PDGF-AA, PDGF-BB, PDGF-CC, and PDGF-DD) and one heterodimer (PDGF-AB; Li and Eriksson). PDGF signals through the receptor tyrosine kinases PDGFRα and PDGFRβ. It has been shown that PDGF-induced migration involves signaling pathways involving MEK/ERK, EGFR, Src and PI3K/AKT (Kim et al.). PDGF is a potent mitogen for cells of mesenchymal origin such as fibroblasts and vascular smooth muscle cells. PDGF has been implicated in pathogenesis of atherosclerosis, glomerulonephritis, cancer, and in the contraction of vascular smooth muscle cells of rat aortic tissues (Fretto et al.; Sachinidis et al.). PDGF-CC is secreted as a latent growth factor and requires activation by proteolytic processing (Li and Eriksson). PDGF-CC binds to PDGFRα homodimers and PDGFRαβ heterodimers, but not to PDGFRβ homodimers (Li and Eriksson). PDGF-CC is an angiogenic factor that stimulates coronary artery smooth muscle cell proliferation and plays a role in cardiovascular development (Gilbertson et al.). PDGF-CC is also expressed in many tumors and plays a role in tumorigenesis (Zwerner and May).