1874 Results for: "L-Ornithine+L-Aspartate"
Anti-GRINA Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
Glutamate receptors mediate most excitatory neurotransmission in the brain and play an important role in neural plasticity, neural development and neurodegeneration. Ionotropic glutamate receptors are categorized into NMDA receptors and kainate/AMPA receptors, both of which contain glutamate-gated, cation-specific ion channels. Synaptic and extrasynaptic NMDA receptors have been shown to have opposite effects on neuronal survival, CREB function and gene regulation. As one of the four major proteins of the NMDA receptor ion channel, GRINA (Glutamate [NMDA] receptor-associated protein 1), also designated NMDA receptor glutamate-binding subunit or putative MAPK-activating protein PM02, is a 371 amino acid multi-pass transmembrane protein. Due to the chromosomal location of the gene encoding GRINA, studies have linked possible GRINA involvement with a form of idiopathic generalized epilepsy.
Expand 1 Items
Anti-GRINA Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Glutamate receptors mediate most excitatory neurotransmission in the brain and play an important role in neural plasticity, neural development and neurodegeneration. Ionotropic glutamate receptors are categorized into NMDA receptors and kainate/AMPA receptors, both of which contain glutamate-gated, cation-specific ion channels. Synaptic and extrasynaptic NMDA receptors have been shown to have opposite effects on neuronal survival, CREB function and gene regulation. As one of the four major proteins of the NMDA receptor ion channel, GRINA (Glutamate [NMDA] receptor-associated protein 1), also designated NMDA receptor glutamate-binding subunit or putative MAPK-activating protein PM02, is a 371 amino acid multi-pass transmembrane protein. Due to the chromosomal location of the gene encoding GRINA, studies have linked possible GRINA involvement with a form of idiopathic generalized epilepsy.
Expand 1 Items
Anti-TRDMT1 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Methylation at the 5'-position of cytosine is the only known naturally occurring covalent modification of the mammalian genome. DNA methylation requires the enzymatic activity of DNA 5-cytosine methyltransferase (Dnmt) proteins, which catalyze the transfer of a methyl group from S-adenosyl methionine to the 5'-position of cytosines residing in the dinucleotide CpG motif, and this methylation results in transcriptional repression of the target gene. The Dnmt enzymes are encoded by independent genes. Dnmt1 is the most abundant, and it preferentially methylates hemimethylated DNA and coordinates gene expression during development. Additional mammalian Dnmt proteins include Dnmt2 and Dnmt3. Dnmt2 lacks the large N-terminal regulator domain of Dnmt1, is expressed at substantially lower levels in adult tissues, and is likely involved in methylating newly integrated retroviral DNA. Dnmt3a and Dnmt3b are encoded by two distinct genes, but both are abundantly expressed in embryonic stem cells, where they also methylate CpG motifs on DNA.
Expand 1 Items
Anti-TRDMT1 Rabbit Polyclonal Antibody (Alexa Fluor® 350)
Supplier: Bioss
Methylation at the 5'-position of cytosine is the only known naturally occurring covalent modification of the mammalian genome. DNA methylation requires the enzymatic activity of DNA 5-cytosine methyltransferase (Dnmt) proteins, which catalyze the transfer of a methyl group from S-adenosyl methionine to the 5'-position of cytosines residing in the dinucleotide CpG motif, and this methylation results in transcriptional repression of the target gene. The Dnmt enzymes are encoded by independent genes. Dnmt1 is the most abundant, and it preferentially methylates hemimethylated DNA and coordinates gene expression during development. Additional mammalian Dnmt proteins include Dnmt2 and Dnmt3. Dnmt2 lacks the large N-terminal regulator domain of Dnmt1, is expressed at substantially lower levels in adult tissues, and is likely involved in methylating newly integrated retroviral DNA. Dnmt3a and Dnmt3b are encoded by two distinct genes, but both are abundantly expressed in embryonic stem cells, where they also methylate CpG motifs on DNA.
Expand 1 Items
Anti-TRDMT1 Rabbit Polyclonal Antibody (Alexa Fluor® 555)
Supplier: Bioss
Methylation at the 5'-position of cytosine is the only known naturally occurring covalent modification of the mammalian genome. DNA methylation requires the enzymatic activity of DNA 5-cytosine methyltransferase (Dnmt) proteins, which catalyze the transfer of a methyl group from S-adenosyl methionine to the 5'-position of cytosines residing in the dinucleotide CpG motif, and this methylation results in transcriptional repression of the target gene. The Dnmt enzymes are encoded by independent genes. Dnmt1 is the most abundant, and it preferentially methylates hemimethylated DNA and coordinates gene expression during development. Additional mammalian Dnmt proteins include Dnmt2 and Dnmt3. Dnmt2 lacks the large N-terminal regulator domain of Dnmt1, is expressed at substantially lower levels in adult tissues, and is likely involved in methylating newly integrated retroviral DNA. Dnmt3a and Dnmt3b are encoded by two distinct genes, but both are abundantly expressed in embryonic stem cells, where they also methylate CpG motifs on DNA.
Expand 1 Items
Anti-TRDMT1 Rabbit Polyclonal Antibody (Alexa Fluor® 647)
Supplier: Bioss
Methylation at the 5'-position of cytosine is the only known naturally occurring covalent modification of the mammalian genome. DNA methylation requires the enzymatic activity of DNA 5-cytosine methyltransferase (Dnmt) proteins, which catalyze the transfer of a methyl group from S-adenosyl methionine to the 5'-position of cytosines residing in the dinucleotide CpG motif, and this methylation results in transcriptional repression of the target gene. The Dnmt enzymes are encoded by independent genes. Dnmt1 is the most abundant, and it preferentially methylates hemimethylated DNA and coordinates gene expression during development. Additional mammalian Dnmt proteins include Dnmt2 and Dnmt3. Dnmt2 lacks the large N-terminal regulator domain of Dnmt1, is expressed at substantially lower levels in adult tissues, and is likely involved in methylating newly integrated retroviral DNA. Dnmt3a and Dnmt3b are encoded by two distinct genes, but both are abundantly expressed in embryonic stem cells, where they also methylate CpG motifs on DNA.
Expand 1 Items
Anti-TRDMT1 Rabbit Polyclonal Antibody (Alexa Fluor® 488)
Supplier: Bioss
Methylation at the 5'-position of cytosine is the only known naturally occurring covalent modification of the mammalian genome. DNA methylation requires the enzymatic activity of DNA 5-cytosine methyltransferase (Dnmt) proteins, which catalyze the transfer of a methyl group from S-adenosyl methionine to the 5'-position of cytosines residing in the dinucleotide CpG motif, and this methylation results in transcriptional repression of the target gene. The Dnmt enzymes are encoded by independent genes. Dnmt1 is the most abundant, and it preferentially methylates hemimethylated DNA and coordinates gene expression during development. Additional mammalian Dnmt proteins include Dnmt2 and Dnmt3. Dnmt2 lacks the large N-terminal regulator domain of Dnmt1, is expressed at substantially lower levels in adult tissues, and is likely involved in methylating newly integrated retroviral DNA. Dnmt3a and Dnmt3b are encoded by two distinct genes, but both are abundantly expressed in embryonic stem cells, where they also methylate CpG motifs on DNA.
Expand 1 Items
Anti-TRDMT1 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
CpG methylation is an epigenetic modification that is important for embryonic development, imprinting, and X-chromosome inactivation. Studies in mice have demonstrated that DNA methylation is required for mammalian development. TRDMT1 is a protein with similarity to DNA methyltransferases, but this protein does not display methyltransferase activity. The protein strongly binds DNA, suggesting that it may mark specific sequences in the genome.CpG methylation is an epigenetic modification that is important for embryonic development, imprinting, and X-chromosome inactivation. Studies in mice have demonstrated that DNA methylation is required for mammalian development. This gene encodes a protein with similarity to DNA methyltransferases, but this protein does not display methyltransferase activity. The protein strongly binds DNA, suggesting that it may mark specific sequences in the genome. Alternative splicing results in multiple transcript variants encoding different isoforms.
Expand 1 Items
Anti-TRDMT1 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))
Supplier: Bioss
Methylation at the 5'-position of cytosine is the only known naturally occurring covalent modification of the mammalian genome. DNA methylation requires the enzymatic activity of DNA 5-cytosine methyltransferase (Dnmt) proteins, which catalyze the transfer of a methyl group from S-adenosyl methionine to the 5'-position of cytosines residing in the dinucleotide CpG motif, and this methylation results in transcriptional repression of the target gene. The Dnmt enzymes are encoded by independent genes. Dnmt1 is the most abundant, and it preferentially methylates hemimethylated DNA and coordinates gene expression during development. Additional mammalian Dnmt proteins include Dnmt2 and Dnmt3. Dnmt2 lacks the large N-terminal regulator domain of Dnmt1, is expressed at substantially lower levels in adult tissues, and is likely involved in methylating newly integrated retroviral DNA. Dnmt3a and Dnmt3b are encoded by two distinct genes, but both are abundantly expressed in embryonic stem cells, where they also methylate CpG motifs on DNA.
Expand 1 Items
Anti-CAD Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
CAD Antibody: Apoptosis is related to many diseases and induced by a family of cell death receptors and their ligands. Cell death signals are transduced by death domain containing adapter molecules and members of the caspase family of proteases. These death signals finally cause the degradation of chromosomal DNA by activated DNase. A mouse DNase that causes DNA fragmentation was identified recently and designated CAD (for caspase activated deoxyribonuclease). The human homologue of mouse CAD was more recently identified by two groups independently and termed CPAN and DFF40. Human DFF45 and its mouse homologue ICAD are the inhibitors of CPAN/DFF40 and CAD, respectively. Upon cleavage of DFF45/ICAD by activated caspase, DFF40/CAD is released and activated and eventually causes the degradation of DNA in the nuclei. Activation of CAD/DFF40, which causes DNA degradation, is the hallmark of apoptotic cell death.
Expand 1 Items
Anti-CAD Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
CAD Antibody: Apoptosis is related to many diseases and induced by a family of cell death receptors and their ligands. Cell death signals are transduced by death domain containing adapter molecules and members of the caspase family of proteases. These death signals finally cause the degradation of chromosomal DNA by activated DNase. A mouse DNase that causes DNA fragmentation was identified recently and designated CAD (for caspase activated deoxyribonuclease). The human homologue of mouse CAD was more recently identified by two groups independently and termed CPAN and DFF40. Human DFF45 and its mouse homologue ICAD are the inhibitors of CPAN/DFF40 and CAD, respectively. Upon cleavage of DFF45/ICAD by activated caspase, DFF40/CAD is released and activated and eventually causes the degradation of DNA in the nuclei. Activation of CAD/DFF40, which causes DNA degradation, is the hallmark of apoptotic cell death.
Expand 1 Items
HydrochlorideCrystalline Purity: 99% This material is essentially free of citrulline and ammonia. 1 * 1 kg
Supplier: MP Biomedicals
HydrochlorideCrystalline Purity: 99% This material is essentially free of citrulline and ammonia. 1 * 1 kg
Expand 1 Items
HydrochlorideCrystalline Purity: 99% This material is essentially free of citrulline and ammonia. 1 * 5 g
Supplier: MP Biomedicals
HydrochlorideCrystalline Purity: 99% This material is essentially free of citrulline and ammonia. 1 * 5 g
Expand 1 Items
Anti-PCMT1 Rabbit Polyclonal Antibody
Supplier: ProSci Inc.
Three classes of protein carboxyl methyltransferases, distinguished by their methyl-acceptor substrate specificity, have been found in prokaryotic and eukaryotic cells. The type II enzyme catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the free carboxyl groups of D-aspartyl and L-isoaspartyl residues. These methyl-accepting residues result from the spontaneous deamidation, isomerization, and racemization of normal L-aspartyl and L-asparaginyl residues and represent sites of covalent damage to aging proteins PCMT1 (EC 2.1.1.77) is a protein repair enzyme that initiates the conversion of abnormal D-aspartyl and L-isoaspartyl residues to the normal L-aspartyl form.Three classes of protein carboxyl methyltransferases, distinguished by their methyl-acceptor substrate specificity, have been found in prokaryotic and eukaryotic cells. The type II enzyme catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the free carboxyl groups of D-aspartyl and L-isoaspartyl residues. These methyl-accepting residues result from the spontaneous deamidation, isomerization, and racemization of normal L-aspartyl and L-asparaginyl residues and represent sites of covalent damage to aging proteins PCMT1 (EC 2.1.1.77) is a protein repair enzyme that initiates the conversion of abnormal D-aspartyl and L-isoaspartyl residues to the normal L-aspartyl form.[supplied by OMIM]. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.